Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States of America.
Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America.
PLoS Genet. 2018 Sep 12;14(9):e1007652. doi: 10.1371/journal.pgen.1007652. eCollection 2018 Sep.
One key problem in precision genome editing is the unpredictable plurality of sequence outcomes at the site of targeted DNA double stranded breaks (DSBs). This is due to the typical activation of the versatile Non-homologous End Joining (NHEJ) pathway. Such unpredictability limits the utility of somatic gene editing for applications including gene therapy and functional genomics. For germline editing work, the accurate reproduction of the identical alleles using NHEJ is a labor intensive process. In this study, we propose Microhomology-mediated End Joining (MMEJ) as a viable solution for improving somatic sequence homogeneity in vivo, capable of generating a single predictable allele at high rates (56% ~ 86% of the entire mutant allele pool). Using a combined dataset from zebrafish (Danio rerio) in vivo and human HeLa cell in vitro, we identified specific contextual sequence determinants surrounding genomic DSBs for robust MMEJ pathway activation. We then applied our observation to prospectively design MMEJ-inducing sgRNAs against a variety of proof-of-principle genes and demonstrated high levels of mutant allele homogeneity. MMEJ-based DNA repair at these target loci successfully generated F0 mutant zebrafish embryos and larvae that faithfully recapitulated previously reported, recessive, loss-of-function phenotypes. We also tested the generalizability of our approach in cultured human cells. Finally, we provide a novel algorithm, MENTHU (http://genesculpt.org/menthu/), for improved and facile prediction of candidate MMEJ loci. We believe that this MMEJ-centric approach will have a broader impact on genome engineering and its applications. For example, whereas somatic mosaicism hinders efficient recreation of knockout mutant allele at base pair resolution via the standard NHEJ-based approach, we demonstrate that F0 founders transmitted the identical MMEJ allele of interest at high rates. Most importantly, the ability to directly dictate the reading frame of an endogenous target will have important implications for gene therapy applications in human genetic diseases.
精确基因组编辑的一个关键问题是靶向 DNA 双链断裂(DSB)位点的序列结果不可预测的多样性。这是由于多功能非同源末端连接(NHEJ)途径的典型激活。这种不可预测性限制了体细胞基因编辑在包括基因治疗和功能基因组学在内的应用中的效用。对于种系编辑工作,使用 NHEJ 准确复制相同的等位基因是一个劳动密集型过程。在这项研究中,我们提出微同源介导的末端连接(MMEJ)作为一种可行的解决方案,用于提高体内体细胞序列同源性,能够以高频率(整个突变等位基因库的 56%~86%)产生单个可预测的等位基因。我们使用来自斑马鱼(Danio rerio)体内和人类 HeLa 细胞体外的组合数据集,确定了围绕基因组 DSB 的特定上下文序列决定因素,以实现强大的 MMEJ 途径激活。然后,我们将我们的观察结果应用于有针对性地设计针对各种原理验证基因的 MMEJ 诱导 sgRNA,并证明了高水平的突变等位基因同源性。这些靶标位点的基于 MMEJ 的 DNA 修复成功产生了 F0 突变斑马鱼胚胎和幼虫,忠实地再现了先前报道的隐性、功能丧失表型。我们还在培养的人类细胞中测试了我们方法的通用性。最后,我们提供了一种新的算法 MENTHU(http://genesculpt.org/menthu/),用于改进和方便预测候选 MMEJ 位点。我们相信,这种以 MMEJ 为中心的方法将对基因组工程及其应用产生更广泛的影响。例如,虽然体细胞镶嵌性通过基于标准 NHEJ 的方法以碱基对分辨率有效地重现敲除突变等位基因,但我们证明,以高频率传递感兴趣的 MMEJ 等位基因的 F0 创始人。最重要的是,直接决定内源性靶标的阅读框的能力将对人类遗传疾病的基因治疗应用具有重要意义。