Institute for Personalized Medicine, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , China.
ACS Nano. 2019 Nov 26;13(11):13595-13601. doi: 10.1021/acsnano.9b08259. Epub 2019 Nov 11.
Plasmonic microscopy is a powerful tool for nanoscopic bio- and chemical sample analysis due to its high sensitivity. Phase quantification in plasmonic microscopy would provide inherent information, .., refractive index, for identification of nanomaterials. However, it usually relies on complex optics to acquire quantitative phase images. Here, we demonstrated the quantitative amplitude and phase imaging capabilities through holographical reconstructions of the plasmonic patterns recorded in the interferometric plasmonic microscopy. Operating the plasmonic microscopy over the surface plasmon resonance angle separates the twin images and allows for accurate mapping of the amplitude and phase distribution of surface plasmon near fields. Results show that the imaging capabilities enable direct visualization of complex surface plasmon fields arising from interactions with nanoparticles and nanowires, without the need for nanoscopic scanning probes. Theoretical and experimental analysis also suggests future applications in the identification of nanoparticles and super-resolution imaging. The proposed technology is thus promising for nanoplasmonic study and various sensing purposes.
等离子体显微镜由于其高灵敏度,是一种用于纳米级生物和化学样品分析的强大工具。等离子体显微镜中的相位量化将提供固有信息,......折射率,用于识别纳米材料。然而,它通常依赖于复杂的光学器件来获取定量相位图像。在这里,我们通过记录在干涉等离子体显微镜中的等离子体图案的全息重建来证明了定量幅度和相位成像的能力。在表面等离子体共振角上操作等离子体显微镜可以分离孪生图像,并允许准确地绘制表面等离子近场的幅度和相位分布。结果表明,成像能力能够直接可视化由于与纳米粒子和纳米线相互作用而产生的复杂表面等离子体场,而无需纳米级扫描探针。理论和实验分析还表明了在识别纳米粒子和超分辨率成像方面的未来应用。因此,该技术有望用于纳米等离子体研究和各种传感目的。