Suppr超能文献

Src 底物结合:从 NMR 和分子动力学角度看酪氨酸激酶底物识别的新视角。

Substrate binding to Src: A new perspective on tyrosine kinase substrate recognition from NMR and molecular dynamics.

机构信息

Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana.

Ancestry, Lehi, Utah.

出版信息

Protein Sci. 2020 Feb;29(2):350-359. doi: 10.1002/pro.3777. Epub 2019 Nov 21.

Abstract

Most signal transduction pathways in humans are regulated by protein kinases through phosphorylation of their protein substrates. Typical eukaryotic protein kinases are of two major types: those that phosphorylate-specific sequences containing tyrosine (90 kinases) and those that phosphorylate either serine or threonine (395 kinases). The highly conserved catalytic domain of protein kinases comprises a smaller N lobe and a larger C lobe separated by a cleft region lined by the activation loop. Prior studies find that protein tyrosine kinases recognize peptide substrates by binding the polypeptide chain along the C-lobe on one side of the activation loop, while serine/threonine kinases bind their substrates in the cleft and on the side of the activation loop opposite to that of the tyrosine kinases. Substrate binding structural studies have been limited to four families of the tyrosine kinase group, and did not include Src tyrosine kinases. We examined peptide-substrate binding to Src using paramagnetic-relaxation-enhancement NMR combined with molecular dynamics simulations. The results suggest Src tyrosine kinase can bind substrate positioning residues C-terminal to the phosphoacceptor residue in an orientation similar to serine/threonine kinases, and unlike other tyrosine kinases. Mutagenesis corroborates this new perspective on tyrosine kinase substrate recognition. Rather than an evolutionary split between tyrosine and serine/threonine kinases, a change in substrate recognition may have occurred within the TK group of the human kinome. Protein tyrosine kinases have long been therapeutic targets, but many marketed drugs have deleterious off-target effects. More accurate knowledge of substrate interactions of tyrosine kinases has the potential for improving drug selectivity.

摘要

在人类中,大多数信号转导途径通过其蛋白质底物的磷酸化被蛋白激酶调节。典型的真核蛋白激酶有两种主要类型:一种是磷酸化含有酪氨酸的特定序列的激酶(约 90 种),另一种是磷酸化丝氨酸或苏氨酸的激酶(约 395 种)。蛋白激酶的高度保守催化结构域由较小的 N lobe 和较大的 C lobe 组成,两者由激活环的裂隙区域隔开。先前的研究发现,蛋白酪氨酸激酶通过结合激活环一侧的 C lobe 上的多肽链来识别肽底物,而丝氨酸/苏氨酸激酶则在裂隙中和与酪氨酸激酶相对的激活环的一侧结合其底物。底物结合结构研究仅限于酪氨酸激酶组的四个家族,不包括 Src 酪氨酸激酶。我们使用顺磁弛豫增强 NMR 结合分子动力学模拟研究了 Src 与肽底物的结合。结果表明,Src 酪氨酸激酶可以结合底物定位残基,其位置在磷酸受体残基的 C 末端,与丝氨酸/苏氨酸激酶的结合方式相似,与其他酪氨酸激酶不同。突变分析证实了这种新的酪氨酸激酶底物识别观点。在人类激酶组中,可能不是酪氨酸和丝氨酸/苏氨酸激酶之间的进化分裂,而是底物识别发生了变化。蛋白酪氨酸激酶一直是治疗的靶点,但许多上市药物具有有害的脱靶效应。更准确地了解酪氨酸激酶的底物相互作用有可能提高药物的选择性。

相似文献

引用本文的文献

5
Biomolecular dynamics in the 21st century.21世纪的生物分子动力学。
Biochim Biophys Acta Gen Subj. 2024 Feb;1868(2):130534. doi: 10.1016/j.bbagen.2023.130534. Epub 2023 Dec 6.
10
Temperature sensitivities of metazoan and pre-metazoan Src kinases.后生动物和前体后生动物Src激酶的温度敏感性。
Biochem Biophys Rep. 2020 Jun 10;23:100775. doi: 10.1016/j.bbrep.2020.100775. eCollection 2020 Sep.

本文引用的文献

1
Kinase inhibitors: the road ahead.激酶抑制剂:前路漫漫。
Nat Rev Drug Discov. 2018 May;17(5):353-377. doi: 10.1038/nrd.2018.21. Epub 2018 Mar 16.
2
Homing in: Mechanisms of Substrate Targeting by Protein Kinases.归巢:蛋白激酶的底物靶向机制。
Trends Biochem Sci. 2018 May;43(5):380-394. doi: 10.1016/j.tibs.2018.02.009. Epub 2018 Mar 12.
4
The kinome 'at large' in cancer.癌症中的激酶组全景。
Nat Rev Cancer. 2016 Feb;16(2):83-98. doi: 10.1038/nrc.2015.18.
6
Perspective on computational and structural aspects of kinase discovery from IPK2014.从IPK2014看激酶发现的计算与结构方面的观点。
Biochim Biophys Acta. 2015 Oct;1854(10 Pt B):1595-604. doi: 10.1016/j.bbapap.2015.03.014. Epub 2015 Apr 7.
8
Getting Syk: spleen tyrosine kinase as a therapeutic target.靶向 Syk:脾酪氨酸激酶作为治疗靶点。
Trends Pharmacol Sci. 2014 Aug;35(8):414-22. doi: 10.1016/j.tips.2014.05.007. Epub 2014 Jun 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验