Suppr超能文献

使用 Twitter 是否能降低抑郁症状?面对面社会支持的调节作用。

Are Aspects of Twitter Use Associated with Reduced Depressive Symptoms? The Moderating Role of In-Person Social Support.

机构信息

Department of Psychology and Human Development, Vanderbilt University, Nashville, Tennessee.

Department of Computer Engineering, Vanderbilt University, Nashville, Tennessee.

出版信息

Cyberpsychol Behav Soc Netw. 2019 Nov;22(11):692-699. doi: 10.1089/cyber.2019.0035.

Abstract

In a two-wave, 4-month longitudinal study of 308 adults, two hypotheses were tested regarding the relation of Twitter-based measures of online social media use and in-person social support with depressive thoughts and symptoms. For four of five measures, Twitter use by in-person social support interactions predicted residualized change in depression-related outcomes over time; these results supported a corollary of the social compensation hypothesis that social media use is associated with greater benefits for people with lower in-person social support. In particular, having a larger Twitter social network (i.e., following and being followed by more people) and being more active in that network (i.e., sending and receiving more tweets) are especially helpful to people who have lower levels of in-person social support. For the fifth measure (the sentiment of Tweets), no interaction emerged; however, a beneficial main effect offset the adverse main effect of low in-person social support.

摘要

在一项针对 308 名成年人的两波、为期四个月的纵向研究中,针对基于 Twitter 的在线社交媒体使用和面对面社会支持与抑郁思想和症状的关系,检验了两个假设。对于五个指标中的四个,面对面社交支持互动的 Twitter 使用预测了与抑郁相关结果随时间的剩余变化;这些结果支持了社交媒体使用与低面对面社会支持的人获得更大收益的社会补偿假说的推论。具体来说,拥有更大的 Twitter 社交网络(即,关注和被更多人关注)并且在该网络中更活跃(即,发送和接收更多推文)对面对面社会支持水平较低的人特别有帮助。对于第五个指标(推文的情绪),没有出现交互作用;然而,有益的主要作用抵消了低面对面社会支持的不利主要作用。

相似文献

1
Are Aspects of Twitter Use Associated with Reduced Depressive Symptoms? The Moderating Role of In-Person Social Support.
Cyberpsychol Behav Soc Netw. 2019 Nov;22(11):692-699. doi: 10.1089/cyber.2019.0035.
2
Detecting Signs of Depression in Tweets in Spanish: Behavioral and Linguistic Analysis.
J Med Internet Res. 2019 Jun 27;21(6):e14199. doi: 10.2196/14199.
4
The Online Social Support Scale: Measure development and validation.
Psychol Assess. 2018 Sep;30(9):1127-1143. doi: 10.1037/pas0000558. Epub 2018 May 21.
7
Monitoring Physical Activity Levels Using Twitter Data: Infodemiology Study.
J Med Internet Res. 2019 Jun 3;21(6):e12394. doi: 10.2196/12394.
8
Association between social media use (Twitter, Instagram, Facebook) and depressive symptoms: Are Twitter users at higher risk?
Int J Soc Psychiatry. 2019 Feb;65(1):14-19. doi: 10.1177/0020764018814270. Epub 2018 Nov 30.
10
Strategic use of Twitter as a source of health information: a pilot study with textual analysis of health tweets.
Inform Health Soc Care. 2019;44(4):422-437. doi: 10.1080/17538157.2019.1656207.

引用本文的文献

2
New measurements of digital technology use: the Immersion in Digital Life and Quality of Digital Experience scales.
Front Psychiatry. 2025 Jun 30;16:1595536. doi: 10.3389/fpsyt.2025.1595536. eCollection 2025.
5
Age-related differences in social media use, online social support, and depressive symptoms in adolescents and emerging adults.
Child Adolesc Ment Health. 2023 Nov;28(4):497-503. doi: 10.1111/camh.12640. Epub 2023 Feb 7.
8
The Roles of Social Media Use and Friendship Quality in Adolescents' Internalizing Problems and Well-being.
J Happiness Stud. 2022;23(7):3161-3178. doi: 10.1007/s10902-022-00539-w. Epub 2022 Jun 6.
9
Can language use in social media help in the treatment of severe mental illness?
Curr Res Psychiatry. 2021;1(1):1-4. doi: 10.46439/psychiatry.1.001.
10
A Call for a Public Health Agenda for Social Media Research.
J Med Internet Res. 2019 Dec 19;21(12):e16661. doi: 10.2196/16661.

本文引用的文献

2
The Relationship Between Social Media Use and Sleep Quality among Undergraduate Students.
Inf Commun Soc. 2018;21(2):163-173. doi: 10.1080/1369118X.2016.1266374. Epub 2016 Dec 20.
4
Assessing and overcoming participant dishonesty in online data collection.
Behav Res Methods. 2018 Aug;50(4):1563-1567. doi: 10.3758/s13428-017-0984-5.
5
The Relationship Between Online Social Networking and Depression: A Systematic Review of Quantitative Studies.
Cyberpsychol Behav Soc Netw. 2016 Nov;19(11):638-648. doi: 10.1089/cyber.2016.0206. Epub 2016 Oct 12.
6
Social support and protection from depression: systematic review of current findings in Western countries.
Br J Psychiatry. 2016 Oct;209(4):284-293. doi: 10.1192/bjp.bp.115.169094. Epub 2016 Jul 21.
7
Measuring the Prevalence of Problematic Respondent Behaviors among MTurk, Campus, and Community Participants.
PLoS One. 2016 Jun 28;11(6):e0157732. doi: 10.1371/journal.pone.0157732. eCollection 2016.
8
A content analysis of depression-related Tweets.
Comput Human Behav. 2016 Jan 1;54:351-357. doi: 10.1016/j.chb.2015.08.023.
9
Characterizing Sleep Issues Using Twitter.
J Med Internet Res. 2015 Jun 8;17(6):e140. doi: 10.2196/jmir.4476.
10
A Scalable Framework to Detect Personal Health Mentions on Twitter.
J Med Internet Res. 2015 Jun 5;17(6):e138. doi: 10.2196/jmir.4305.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验