Suppr超能文献

iPBAvizu:一种用于高效3D蛋白质结构叠加方法的PyMOL插件。

iPBAvizu: a PyMOL plugin for an efficient 3D protein structure superimposition approach.

作者信息

Faure Guilhem, Joseph Agnel Praveen, Craveur Pierrick, Narwani Tarun J, Srinivasan Narayanaswamy, Gelly Jean-Christophe, Rebehmed Joseph, de Brevern Alexandre G

机构信息

INSERM, U 1134, DSIMB, Univ Paris, Univ de la Réunion, Univ des Antilles, F-75739 Paris, France.

INSERM UMR_S 1134, DSIMB, Université de Paris, Institut National de la Transfusion Sanguine (INTS), 6, rue Alexandre Cabanel, F-75739, Paris cedex 15, France.

出版信息

Source Code Biol Med. 2019 Nov 2;14:5. doi: 10.1186/s13029-019-0075-3. eCollection 2019.

Abstract

BACKGROUND

Protein 3D structure is the support of its function. Comparison of 3D protein structures provides insight on their evolution and their functional specificities and can be done efficiently via protein structure superimposition analysis. Multiple approaches have been developed to perform such task and are often based on structural superimposition deduced from sequence alignment, which does not take into account structural features. Our methodology is based on the use of a Structural Alphabet (SA), i.e. a library of 3D local protein prototypes able to approximate protein backbone. The interest of a SA is to translate into 1D sequences into the 3D structures.

RESULTS

We used Protein blocks (PB), a widely used SA consisting of 16 prototypes, each representing a conformation of the pentapeptide skeleton defined in terms of dihedral angles. Proteins are described using PB from which we have previously developed a sequence alignment procedure based on dynamic programming with a dedicated PB Substitution Matrix. We improved the procedure with a specific two-step search: (i) very similar regions are selected using very high weights and aligned, and (ii) the alignment is completed (if possible) with less stringent parameters. Our approach, iPBA, has shown to perform better than other available tools in benchmark tests. To facilitate the usage of iPBA, we designed and implemented iPBAvizu, a plugin for PyMOL that allows users to run iPBA in an easy way and analyse protein superimpositions.

CONCLUSIONS

iPBAvizu is an implementation of iPBA within the well-known and widely used PyMOL software. iPBAvizu enables to generate iPBA alignments, create and interactively explore structural superimposition, and assess the quality of the protein alignments.

摘要

背景

蛋白质三维结构是其功能的支撑。比较蛋白质三维结构有助于了解其进化过程和功能特异性,并且可以通过蛋白质结构叠加分析高效完成。已经开发了多种方法来执行此任务,这些方法通常基于从序列比对推导的结构叠加,而没有考虑结构特征。我们的方法基于使用结构字母表(SA),即一个能够近似蛋白质主链的三维局部蛋白质原型库。SA的作用是将一维序列转化为三维结构。

结果

我们使用了蛋白质块(PB),这是一种广泛使用的SA,由16个原型组成,每个原型代表根据二面角定义的五肽骨架的一种构象。使用PB来描述蛋白质,我们之前基于动态规划和专用的PB替换矩阵开发了一种序列比对程序。我们通过特定的两步搜索改进了该程序:(i)使用非常高的权重选择非常相似的区域并进行比对,(ii)(如果可能)用不太严格的参数完成比对。我们的方法iPBA在基准测试中表现优于其他现有工具。为了便于使用iPBA,我们设计并实现了iPBAvizu,这是一个用于PyMOL的插件,允许用户以简单的方式运行iPBA并分析蛋白质叠加。

结论

iPBAvizu是在著名且广泛使用的PyMOL软件中对iPBA的一种实现。iPBAvizu能够生成iPBA比对、创建并交互式探索结构叠加,以及评估蛋白质比对的质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e43/6825713/ac56b50df721/13029_2019_75_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验