Larroque Jeremy, Legault Simon, Johns Rob, Lumley Lisa, Cusson Michel, Renaut Sébastien, Levesque Roger C, James Patrick M A
Département de Sciences Biologiques Université de Montréal Montréal Quebec Canada.
Canadian Forest Service Natural Resources Canada Fredericton New Brunswick Canada.
Evol Appl. 2019 Aug 24;12(10):1931-1945. doi: 10.1111/eva.12852. eCollection 2019 Dec.
Spatial synchrony is a common characteristic of spatio-temporal population dynamics across many taxa. While it is known that both dispersal and spatially autocorrelated environmental variation (i.e., the Moran effect) can synchronize populations, the relative contributions of each, and how they interact, are generally unknown. Distinguishing these mechanisms and their effects on synchrony can help us to better understand spatial population dynamics, design conservation and management strategies, and predict climate change impacts. Population genetic data can be used to tease apart these two processes as the spatio-temporal genetic patterns they create are expected to be different. A challenge, however, is that genetic data are often collected at a single point in time, which may introduce context-specific bias. Spatio-temporal sampling strategies can be used to reduce bias and to improve our characterization of the drivers of spatial synchrony. Using spatio-temporal analyses of genotypic data, our objective was to identify the relative support for these two mechanisms to the spatial synchrony in population dynamics of the irruptive forest insect pest, the spruce budworm (), in Quebec (Canada). AMOVA, cluster analysis, isolation by distance, and sPCA were used to characterize spatio-temporal genomic variation using 1,370 SBW larvae sampled over four years (2012-2015) and genotyped at 3,562 SNP loci. We found evidence of overall weak spatial genetic structure that decreased from 2012 to 2015 and a genetic diversity homogenization among the sites. We also found genetic evidence of a long-distance dispersal event over >140 km. These results indicate that dispersal is the key mechanism involved in driving population synchrony of the outbreak. Early intervention management strategies that aim to control source populations have the potential to be effective through limiting dispersal. However, the timing of such interventions relative to outbreak progression is likely to influence their probability of success.
空间同步是许多生物分类群时空种群动态的一个共同特征。虽然已知扩散和空间自相关环境变异(即莫兰效应)都能使种群同步,但它们各自的相对贡献以及相互作用方式通常尚不清楚。区分这些机制及其对同步性的影响有助于我们更好地理解空间种群动态、设计保护和管理策略以及预测气候变化的影响。种群遗传数据可用于区分这两个过程,因为它们所产生的时空遗传模式预计会有所不同。然而,一个挑战是遗传数据通常是在单个时间点收集的,这可能会引入特定背景的偏差。时空采样策略可用于减少偏差并改善我们对空间同步驱动因素的特征描述。利用基因型数据的时空分析,我们的目标是确定这两种机制对加拿大魁北克爆发性森林害虫云杉芽虫种群动态中空间同步的相对支持程度。使用分子方差分析(AMOVA)、聚类分析、距离隔离分析和稀疏主成分分析(sPCA),对在四年(2012 - 2015年)期间采集的1370只云杉芽虫幼虫进行特征分析,这些幼虫在3562个单核苷酸多态性(SNP)位点进行了基因分型。我们发现总体空间遗传结构较弱的证据,且这种结构从2012年到2015年有所下降,同时各地点间的遗传多样性趋于同质化。我们还发现了超过140公里远距离扩散事件的遗传证据。这些结果表明,扩散是驱动爆发种群同步的关键机制。旨在控制源种群的早期干预管理策略有可能通过限制扩散而有效。然而,此类干预相对于爆发进程的时机可能会影响其成功的概率。