Liu Jianfei, Shen Christine, Liu Tao, Aguilera Nancy, Tam Johnny
National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
Ophthalmic Med Image Anal (2019). 2019 Oct;11855:86-94. doi: 10.1007/978-3-030-32956-3_11. Epub 2019 Oct 8.
Direct visualization of photoreceptor cells, specialized neurons in the eye that sense light, can be achieved using adaptive optics (AO) retinal imaging. Evaluating photoreceptor cell morphology in retinal diseases is important for monitoring the onset and progression of blindness, but segmentation of these cells is a critical first step. Most segmentation approaches focus on cell region extraction, without directly considering cell boundary localization. This makes it difficult to track cells that have ambiguous boundaries, which result from low image contrast, anisotropic cell regions, or densely-packed cells whose boundaries appear to touch each other. These are all characteristics of the AO images that we consider here. To address these challenges, we develop an AOSeg-Net method that uses a multi-channel U-Net to predict the spatial probabilities of the cell boundary and obtain cell centroid and region distribution information as a means for facilitating cell segmentation. Five-color theorem guarantees the separation of any touching cells. Finally, a region-based level set algorithm that combines all of these visual cues is used to achieve subpixel cell segmentation. Five-fold cross-validation on 428 high resolution retinal images from 23 human subjects showed that AOSegNet substantially outperformed the only other existing approach with Dice coefficients [%] of 84.7 and 78.4, respectively, and average symmetric contour distances [μm] of 0.59 and 0.80, respectively.
使用自适应光学(AO)视网膜成像可以直接观察光感受器细胞,即眼睛中感知光线的特殊神经元。评估视网膜疾病中的光感受器细胞形态对于监测失明的发生和进展很重要,但这些细胞的分割是关键的第一步。大多数分割方法侧重于细胞区域提取,而没有直接考虑细胞边界定位。这使得跟踪边界模糊的细胞变得困难,这些模糊边界是由低图像对比度、各向异性细胞区域或边界似乎相互接触的密集排列细胞导致的。这些都是我们在此考虑的AO图像的特征。为了应对这些挑战,我们开发了一种AOSeg-Net方法,该方法使用多通道U-Net来预测细胞边界的空间概率,并获得细胞质心和区域分布信息,作为促进细胞分割的一种手段。五色定理保证了任何相互接触的细胞的分离。最后,使用一种结合所有这些视觉线索的基于区域的水平集算法来实现亚像素细胞分割。对来自23名人类受试者的428张高分辨率视网膜图像进行五折交叉验证表明,AOSegNet的表现明显优于唯一的另一种现有方法,其Dice系数分别为84.7%和78.4%,平均对称轮廓距离分别为0.59μm和0.80μm。