Suppr超能文献

从深度学习中获取视觉线索以实现自适应光学视网膜图像中的亚像素细胞分割。

Deriving Visual Cues from Deep Learning to Achieve Subpixel Cell Segmentation in Adaptive Optics Retinal Images.

作者信息

Liu Jianfei, Shen Christine, Liu Tao, Aguilera Nancy, Tam Johnny

机构信息

National Eye Institute, National Institutes of Health, Bethesda, MD, USA.

出版信息

Ophthalmic Med Image Anal (2019). 2019 Oct;11855:86-94. doi: 10.1007/978-3-030-32956-3_11. Epub 2019 Oct 8.

Abstract

Direct visualization of photoreceptor cells, specialized neurons in the eye that sense light, can be achieved using adaptive optics (AO) retinal imaging. Evaluating photoreceptor cell morphology in retinal diseases is important for monitoring the onset and progression of blindness, but segmentation of these cells is a critical first step. Most segmentation approaches focus on cell region extraction, without directly considering cell boundary localization. This makes it difficult to track cells that have ambiguous boundaries, which result from low image contrast, anisotropic cell regions, or densely-packed cells whose boundaries appear to touch each other. These are all characteristics of the AO images that we consider here. To address these challenges, we develop an AOSeg-Net method that uses a multi-channel U-Net to predict the spatial probabilities of the cell boundary and obtain cell centroid and region distribution information as a means for facilitating cell segmentation. Five-color theorem guarantees the separation of any touching cells. Finally, a region-based level set algorithm that combines all of these visual cues is used to achieve subpixel cell segmentation. Five-fold cross-validation on 428 high resolution retinal images from 23 human subjects showed that AOSegNet substantially outperformed the only other existing approach with Dice coefficients [%] of 84.7 and 78.4, respectively, and average symmetric contour distances [μm] of 0.59 and 0.80, respectively.

摘要

使用自适应光学(AO)视网膜成像可以直接观察光感受器细胞,即眼睛中感知光线的特殊神经元。评估视网膜疾病中的光感受器细胞形态对于监测失明的发生和进展很重要,但这些细胞的分割是关键的第一步。大多数分割方法侧重于细胞区域提取,而没有直接考虑细胞边界定位。这使得跟踪边界模糊的细胞变得困难,这些模糊边界是由低图像对比度、各向异性细胞区域或边界似乎相互接触的密集排列细胞导致的。这些都是我们在此考虑的AO图像的特征。为了应对这些挑战,我们开发了一种AOSeg-Net方法,该方法使用多通道U-Net来预测细胞边界的空间概率,并获得细胞质心和区域分布信息,作为促进细胞分割的一种手段。五色定理保证了任何相互接触的细胞的分离。最后,使用一种结合所有这些视觉线索的基于区域的水平集算法来实现亚像素细胞分割。对来自23名人类受试者的428张高分辨率视网膜图像进行五折交叉验证表明,AOSegNet的表现明显优于唯一的另一种现有方法,其Dice系数分别为84.7%和78.4%,平均对称轮廓距离分别为0.59μm和0.80μm。

相似文献

8
Cone photoreceptor definition on adaptive optics retinal imaging.自适应光学视网膜成像中的视锥细胞定义。
Br J Ophthalmol. 2014 Aug;98(8):1073-9. doi: 10.1136/bjophthalmol-2013-304615. Epub 2014 Apr 11.

本文引用的文献

1
CE-Net: Context Encoder Network for 2D Medical Image Segmentation.CE-Net:用于二维医学图像分割的上下文编码器网络。
IEEE Trans Med Imaging. 2019 Oct;38(10):2281-2292. doi: 10.1109/TMI.2019.2903562. Epub 2019 Mar 7.
4
Gland Instance Segmentation Using Deep Multichannel Neural Networks.基于深度多通道神经网络的腺体实例分割。
IEEE Trans Biomed Eng. 2017 Dec;64(12):2901-2912. doi: 10.1109/TBME.2017.2686418. Epub 2017 Mar 23.
7
In vivo imaging of human cone photoreceptor inner segments.人眼视锥细胞内节的活体成像。
Invest Ophthalmol Vis Sci. 2014 Jun 6;55(7):4244-51. doi: 10.1167/iovs.14-14542.
8
Cell segmentation using coupled level sets and graph-vertex coloring.使用耦合水平集和图顶点着色的细胞分割
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):101-8. doi: 10.1007/11866565_13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验