Suppr超能文献

耦合阴阳离子动力学增强室温超离子固态电解质中的阳离子迁移率。

Coupled Cation-Anion Dynamics Enhances Cation Mobility in Room-Temperature Superionic Solid-State Electrolytes.

作者信息

Zhang Zhizhen, Roy Pierre-Nicholas, Li Hui, Avdeev Maxim, Nazar Linda F

机构信息

Department of Chemistry, and the Waterloo Institute of Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada.

Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , 2519 Jiefang Road , Changchun 130023 , China.

出版信息

J Am Chem Soc. 2019 Dec 11;141(49):19360-19372. doi: 10.1021/jacs.9b09343. Epub 2019 Nov 27.

Abstract

Single-ion conducting solid electrolytes are gaining tremendous attention as essential materials for solid-state batteries, but a comprehensive understanding of the factors that dictate high ion mobility remains elusive. Here, for the first time, we use a combination of the Maximum Entropy Method analysis of room-temperature neutron powder diffraction data, ab initio molecular dynamics, and joint-time correlation analysis to demonstrate that the dynamic response of the anion framework plays a significant role in the new class of fast ion conductors, NaSnPnX (Pn = P, Sb; X = S, Se). Facile [PX] anion rotation exists in superionic NaSnPS and NaSnPSe, but greatly hindered [SbS] rotational dynamics are observed in their less conductive analogue, NaSnSbS. Along with introducing dynamic frustration in the energy landscape, the fluctuation caused by [PX] anion rotation is firmly proved to couple to and facilitate long-range cation mobility, by transiently widening the bottlenecks for Na-ion diffusion. The combined analysis described here resolves the role of the long-debated paddle-wheel mechanism, and is the first direct evidence that anion rotation significantly enhances cation migration in rotor phases. The joint-time correlation analysis developed in our work can be broadly applied to analyze coupled cation-anion interplay where traditional transition state theory does not apply. These findings deliver important insights into the fundamentals of ion transport in solid electrolytes. Invoking anion rotational dynamics provides a vital strategy to enhance cation conductivity and serves as an additional and universal design principle for fast ion conductors.

摘要

单离子传导固体电解质作为固态电池的关键材料正受到广泛关注,但对决定高离子迁移率的因素的全面理解仍然难以捉摸。在此,我们首次结合室温中子粉末衍射数据的最大熵方法分析、从头算分子动力学和联合时间关联分析,证明阴离子骨架的动态响应在新型快离子导体NaSnPnX(Pn = P,Sb;X = S,Se)中起着重要作用。在超离子型NaSnPS和NaSnPSe中存在容易的[PX]阴离子旋转,但在导电性较差的类似物NaSnSbS中观察到[SbS]旋转动力学受到极大阻碍。除了在能量景观中引入动态挫折外,[PX]阴离子旋转引起的波动被确凿证明通过暂时拓宽钠离子扩散的瓶颈与长程阳离子迁移耦合并促进其迁移。这里描述的联合分析解决了长期争论的桨轮机制的作用,并且是阴离子旋转在转子相中显著增强阳离子迁移的首个直接证据。我们工作中开发的联合时间关联分析可广泛应用于分析传统过渡态理论不适用的阳离子 - 阴离子耦合相互作用。这些发现为固体电解质中离子传输的基本原理提供了重要见解。引入阴离子旋转动力学提供了提高阳离子电导率的关键策略,并作为快离子导体的另一个通用设计原则。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验