Hogrefe Katharina, Gadermaier Bernhard, Schneider Christian, Bette Sebastian, Lotsch Bettina V, Wilkening H Martin R
Institute of Chemistry and Technology of Materials, Graz University of Technology (NAWI Graz), Stremayrgasse 9, Graz 8010, Austria.
Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart 70569, Germany.
J Am Chem Soc. 2025 Aug 13;147(32):28799-28809. doi: 10.1021/jacs.5c05339. Epub 2025 Jul 29.
The physical properties of any crystalline solid, such as the irregular movement of ions or atoms, are closely linked to its structure. Changes in local structure or local defect chemistry are typically attributed to changes in ion hopping. Conversely, one might also ask whether fast ionic diffusion can cause structural changes, finally initiating an overall phase transition. By using high-resolution Na and P nuclear magnetic resonance (NMR) carried out at temperatures as high as 650 °C, we show that changes of the local Na environment in the Na-conducting model compound NaPS indeed precede the transition of the anionic framework from β-NaPS to the fast-conducting γ-phase. While rapid 2D Na diffusion governs ionic conductivity in the β-phase of NaPS, the high-temperature γ-phase has been theoretically predicted and experimentally shown to be a rotor phase with high dynamics of both the mobile Na cations and the anionic framework. Here, we provide evidence that Na diffusion and the initial transformation of the Na substructure precede the transition of the PS units to a rotating framework. NMR spectra and relaxation times of both Na and P reveal that rapid PS motions occur in a molten Na substructure, but these motions do not influence Na hopping much. Hence, we suggest that Na hopping while first initiating the transformation to the rotor phase is indeed uncoupled from polyanion rotations at high temperatures. Our study provides a new perspective on the details governing phase transitions in fast-ion conductors and may lead to a deeper understanding of these phenomena.
任何晶体固体的物理性质,如离子或原子的不规则运动,都与其结构密切相关。局部结构或局部缺陷化学的变化通常归因于离子跳跃的变化。相反,人们也可能会问,快速离子扩散是否会导致结构变化,最终引发整体相变。通过在高达650°C的温度下进行高分辨率的钠和磷核磁共振(NMR),我们表明,在钠导电模型化合物NaPS中,局部钠环境的变化确实先于阴离子骨架从β-NaPS向快速导电的γ相转变。虽然快速的二维钠扩散控制着NaPS的β相中的离子传导性,但高温γ相在理论上已被预测,并且实验表明它是一个转子相,其中移动的钠阳离子和阴离子骨架都具有高动力学。在这里,我们提供证据表明,钠扩散和钠亚结构的初始转变先于PS单元向旋转骨架的转变。钠和磷的NMR光谱和弛豫时间表明,快速的PS运动发生在熔融的钠亚结构中,但这些运动对钠跳跃的影响不大。因此,我们认为,在首先引发向转子相转变时的钠跳跃确实与高温下的聚阴离子旋转解耦。我们的研究为快速离子导体中相变的控制细节提供了一个新的视角,并可能导致对这些现象的更深入理解。