Dhattarwal Harender S, Somni Rahul, Remsing Richard C
Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
Nat Commun. 2024 Jan 2;15(1):121. doi: 10.1038/s41467-023-44274-z.
Solid-state superionic conductors (SSICs) are promising alternatives to liquid electrolytes in batteries and other energy storage technologies. The rational design of SSICs and ultimately their deployment in battery technologies is hindered by the lack of a thorough understanding of their ion conduction mechanisms. In SSICs containing molecular ions, rotational dynamics couple with translational diffusion to create a paddle-wheel effect that facilitates conduction. The paddle-wheel mechanism explains many important features of molecular SSICs, but an explanation for ion conduction and anharmonic lattice dynamics in SSICs composed of monatomic ions is still needed. We predict that ion conduction in the classic SSIC AgI involves electronic paddle-wheels, rotational motion of localized electron pairs that couples to and facilitates ion diffusion. The electronic paddle-wheel mechanism creates a universal perspective for understanding ion conductivity in both monatomic and molecular SSICs that will create design principles for engineering solid-state electrolytes from the electronic level up to the macroscale.
固态超离子导体(SSICs)在电池及其他储能技术中是有望替代液体电解质的材料。对SSICs离子传导机制缺乏透彻理解,阻碍了其合理设计以及最终在电池技术中的应用。在含有分子离子的SSICs中,旋转动力学与平移扩散相互作用,产生一种促进传导的桨轮效应。桨轮机制解释了分子SSICs的许多重要特性,但仍需要对由单原子离子组成的SSICs中的离子传导和非谐晶格动力学作出解释。我们预测,经典SSIC AgI中的离子传导涉及电子桨轮,即局域电子对的旋转运动,它与离子扩散耦合并促进离子扩散。电子桨轮机制为理解单原子和分子SSICs中的离子电导率提供了一个通用视角,这将为从电子层面到宏观尺度的固态电解质工程创造设计原则。