SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom.
Departamento de Física, Universidade Federal de Sergipe, Sergipe, 49100-000, Brazil.
Phys Rev Lett. 2019 Oct 18;123(16):167402. doi: 10.1103/PhysRevLett.123.167402.
Coherent generation of indistinguishable single photons is crucial for many quantum communication and processing protocols. Solid-state realizations of two-level atomic transitions or three-level spin-Λ systems offer significant advantages over their atomic counterparts for this purpose, albeit decoherence can arise due to environmental couplings. One popular approach to mitigate dephasing is to operate in the weak-excitation limit, where the excited-state population is minimal and coherently scattered photons dominate over incoherent emission. Here we probe the coherence of photons produced using two-level and spin-Λ solid-state systems. We observe that the coupling of the atomiclike transitions to the vibronic transitions of the crystal lattice is independent of the driving strength, even for detuned excitation using the spin-Λ configuration. We apply a polaron master equation to capture the non-Markovian dynamics of the vibrational manifolds. These results provide insight into the fundamental limitations to photon coherence from solid-state quantum emitters.
相干单光子的产生对于许多量子通信和处理协议至关重要。对于这个目的,相比于原子跃迁或三能级自旋-Λ 系统,固态实现具有明显的优势,尽管由于环境耦合可能会出现退相干。减轻相消的一种流行方法是在弱激发极限下操作,在该极限下,激发态的群体最小,相干散射光子占主导地位,而非相干发射。在这里,我们探测了使用两能级和自旋-Λ 固态系统产生的光子的相干性。我们观察到,原子跃迁与晶格的声子跃迁的耦合与驱动强度无关,即使对于使用自旋-Λ 配置的失谐激发也是如此。我们应用极化子主方程来捕获振动模式的非马尔可夫动力学。这些结果为从固态量子发射器产生光子相干性的基本限制提供了深入的了解。