Silva Catarina L, Olival Ana, Perestrelo Rosa, Silva Pedro, Tomás Helena, Câmara José S
CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal.
Faculdade de Ciências Exactas e Engenharia da Universidade da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal.
Metabolites. 2019 Nov 7;9(11):269. doi: 10.3390/metabo9110269.
Breast cancer (BC) remains the second leading cause of death among women worldwide. An emerging approach based on the identification of endogenous metabolites (EMs) and the establishment of the metabolomic fingerprint of biological fluids constitutes a new frontier in medical diagnostics and a promising strategy to differentiate cancer patients from healthy individuals. In this work we aimed to establish the urinary metabolomic patterns from 40 BC patients and 38 healthy controls (CTL) using proton nuclear magnetic resonance spectroscopy (1H-NMR) as a powerful approach to identify a set of BC-specific metabolites which might be employed in the diagnosis of BC. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was applied to a 1H-NMR processed data matrix. Metabolomic patterns distinguished BC from CTL urine samples, suggesting a unique metabolite profile for each investigated group. A total of 10 metabolites exhibited the highest contribution towards discriminating BC patients from healthy controls (variable importance in projection (VIP) >1, < 0.05). The discrimination efficiency and accuracy of the urinary EMs were ascertained by receiver operating characteristic curve (ROC) analysis that allowed the identification of some metabolites with the highest sensitivities and specificities to discriminate BC patients from healthy controls (e.g. creatine, glycine, trimethylamine N-oxide, and serine). The metabolomic pathway analysis indicated several metabolism pathway disruptions, including amino acid and carbohydrate metabolisms, in BC patients, namely, glycine and butanoate metabolisms. The obtained results support the high throughput potential of NMR-based urinary metabolomics patterns in discriminating BC patients from CTL. Further investigations could unravel novel mechanistic insights into disease pathophysiology, monitor disease recurrence, and predict patient response towards therapy.
乳腺癌(BC)仍是全球女性中第二大主要死因。一种基于内源性代谢物(EMs)识别和生物体液代谢组学指纹图谱建立的新兴方法,构成了医学诊断的新前沿,也是区分癌症患者与健康个体的一种有前景的策略。在这项工作中,我们旨在利用质子核磁共振波谱(1H-NMR)作为一种强大的方法,从40例BC患者和38例健康对照(CTL)中建立尿液代谢组学模式,以识别一组可能用于BC诊断的BC特异性代谢物。将正交偏最小二乘判别分析(OPLS-DA)应用于1H-NMR处理后的数据矩阵。代谢组学模式区分了BC患者和CTL尿液样本,表明每个研究组都有独特的代谢物谱。共有10种代谢物对区分BC患者和健康对照的贡献最大(投影变量重要性(VIP)>1,<0.05)。通过受试者工作特征曲线(ROC)分析确定了尿液EMs的鉴别效率和准确性,该分析允许识别一些对区分BC患者和健康对照具有最高敏感性和特异性的代谢物(例如肌酸、甘氨酸、氧化三甲胺和丝氨酸)。代谢组学通路分析表明,BC患者存在几种代谢通路紊乱,包括氨基酸和碳水化合物代谢,即甘氨酸和丁酸代谢。获得的结果支持基于NMR的尿液代谢组学模式在区分BC患者和CTL方面的高通量潜力。进一步的研究可能会揭示疾病病理生理学的新机制见解,监测疾病复发,并预测患者对治疗的反应。