Wu Ge, Liu Chang, Sun Ligang, Wang Qing, Sun Baoan, Han Bin, Kai Ji-Jung, Luan Junhua, Liu Chain Tsuan, Cao Ke, Lu Yang, Cheng Lizi, Lu Jian
Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
School of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
Nat Commun. 2019 Nov 8;10(1):5099. doi: 10.1038/s41467-019-13087-4.
High strength and high ductility are often mutually exclusive properties for structural metallic materials. This is particularly important for aluminum (Al)-based alloys which are widely commercially employed. Here, we introduce a hierarchical nanostructured Al alloy with a structure of Al nanograins surrounded by nano-sized metallic glass (MG) shells. It achieves an ultrahigh yield strength of 1.2 GPa in tension (1.7 GPa in compression) along with 15% plasticity in tension (over 70% in compression). The nano-sized MG phase facilitates such ultrahigh strength by impeding dislocation gliding from one nanograin to another, while continuous generation-movement-annihilation of dislocations in the Al nanograins and the flow behavior of the nano-sized MG phase result in increased plasticity. This plastic deformation mechanism is also an efficient way to decrease grain size to sub-10 nm size for low melting temperature metals like Al, making this structural design one solution to the strength-plasticity trade-off.
高强度和高延展性对于结构金属材料而言通常是相互排斥的特性。这对于广泛应用于商业领域的铝基合金尤为重要。在此,我们介绍一种具有分层纳米结构的铝合金,其结构为被纳米尺寸金属玻璃(MG)壳包围的铝纳米晶粒。它在拉伸时实现了1.2吉帕的超高屈服强度(压缩时为1.7吉帕),同时在拉伸时有15%的塑性(压缩时超过70%)。纳米尺寸的MG相通过阻碍位错从一个纳米晶粒滑移到另一个纳米晶粒来促进这种超高强度,而铝纳米晶粒中位错的持续产生 - 运动 - 湮灭以及纳米尺寸MG相的流动行为导致塑性增加。这种塑性变形机制也是将低熔点金属(如铝)的晶粒尺寸减小到亚10纳米尺寸的有效方法,使得这种结构设计成为解决强度 - 塑性权衡问题的一种方案。