Liu Chang, Liu Yong, Wang Qing, Liu Xiaowei, Bao Yan, Wu Ge, Lu Jian
Department of Mechanical Engineering City University of Hong Kong Hong Kong China.
Max-Planck-Institut für Eisenforschung Max-Planck-Straße 1 Düsseldorf 40237 Germany.
Adv Sci (Weinh). 2020 Aug 16;7(19):2001480. doi: 10.1002/advs.202001480. eCollection 2020 Oct.
Magnesium (Mg) alloys are good candidates for applications with requirement of energy saving, taking advantage of their low density. However, the fewer slip systems of the hexagonal-close-packed (hcp) structure restrict ductility of Mg alloys. Here, a hybrid nanostructure concept is presented by combining nano-dual-phase metallic glass (NDP-MG) and gradient nanograin structure in Mg alloys to achieve a higher yield strength (230 MPa, 31% improvement compared with the reference base alloy) and larger ductility (20%, threefold higher than the SMAT-H sample), which breaks the strength-ductility trade-off dilemma. This hybrid nanostructure is realized by surface mechanical attrition treatment (SMAT) on the surface of a crystalline Mg alloy, and followed by physical vapor deposition of a Mg-based NDP-MG. The higher strength is provided by the nanograin layer generated by SMAT. The larger ductility is a synergistic effect of multiple shear bandings and nanocrystallization of the NDP-MG, inhibition of crack propagation from the SMATed nanograined structure by the NDP-MG, and strain-induced grain growth in the SMATed nanograin layer. This hybrid nanostructure design provides a general route to render brittle alloys stronger and ductile, especially in hcp systems.
镁(Mg)合金凭借其低密度的优势,是适用于节能要求应用的良好候选材料。然而,六方密排(hcp)结构的滑移系较少,限制了镁合金的延展性。在此,通过将纳米双相金属玻璃(NDP-MG)与镁合金中的梯度纳米晶粒结构相结合,提出了一种混合纳米结构概念,以实现更高的屈服强度(230MPa,与参考基础合金相比提高了31%)和更大的延展性(20%,比SMAT-H样品高三倍),这打破了强度-延展性权衡的困境。这种混合纳米结构是通过对结晶镁合金表面进行表面机械研磨处理(SMAT),然后物理气相沉积镁基NDP-MG来实现的。较高的强度由SMAT产生的纳米晶粒层提供。较大的延展性是NDP-MG的多重剪切带化和纳米晶化、NDP-MG抑制SMAT纳米晶粒结构中的裂纹扩展以及SMAT纳米晶粒层中的应变诱导晶粒生长的协同效应。这种混合纳米结构设计提供了一条使脆性合金更强韧且具有延展性的通用途径,尤其是在hcp体系中。