Bachmann Maja D, Sharpe Aaron L, Barnard Arthur W, Putzke Carsten, König Markus, Khim Seunghyun, Goldhaber-Gordon David, Mackenzie Andrew P, Moll Philip J W
Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany.
School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK.
Nat Commun. 2019 Nov 8;10(1):5081. doi: 10.1038/s41467-019-13020-9.
Geometric electron optics may be implemented in solids when electron transport is ballistic on the length scale of a device. Currently, this is realized mainly in 2D materials characterized by circular Fermi surfaces. Here we demonstrate that the nearly perfectly hexagonal Fermi surface of PdCoO gives rise to highly directional ballistic transport. We probe this directional ballistic regime in a single crystal of PdCoO by use of focused ion beam (FIB) micro-machining, defining crystalline ballistic circuits with features as small as 250 nm. The peculiar hexagonal Fermi surface naturally leads to enhanced electron self-focusing effects in a magnetic field compared to circular Fermi surfaces. This super-geometric focusing can be quantitatively predicted for arbitrary device geometry, based on the hexagonal cyclotron orbits appearing in this material. These results suggest a novel class of ballistic electronic devices exploiting the unique transport characteristics of strongly faceted Fermi surfaces.
当电子在器件的长度尺度上进行弹道输运时,几何电子光学可以在固体中实现。目前,这主要在具有圆形费米面特征的二维材料中得以实现。在此,我们证明了PdCoO近乎完美的六边形费米面会产生高度定向的弹道输运。我们通过聚焦离子束(FIB)微加工在PdCoO单晶中探测这种定向弹道区域,定义了特征尺寸小至250 nm的晶体弹道电路。与圆形费米面相比,独特的六边形费米面在磁场中自然会导致增强的电子自聚焦效应。基于这种材料中出现的六边形回旋轨道,可以对任意器件几何形状进行这种超几何聚焦的定量预测。这些结果表明了一类新型的弹道电子器件,它们利用了具有强烈刻面的费米面的独特输运特性。