Suppr超能文献

通过氢键形成制造超小纳米晶体:体外和体内评价。

Fabrication of ultra-small nanocrystals by formation of hydrogen bonds: In vitro and in vivo evaluation.

机构信息

National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China.

School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, PR China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China.

出版信息

Int J Pharm. 2020 Jan 5;573:118730. doi: 10.1016/j.ijpharm.2019.118730. Epub 2019 Nov 6.

Abstract

Poor water solubility and low bioavailability hinder the clinical application of about 70% of newly synthesized compounds. Nanocrystal technology has become a preferred way to improve bioavailability by improving solubility. However, it remains challenging to produce nanocrystals with ultra-small particle sizes to further enhance the extent of bioavailability. Herein, we constructed ultra-small puerarin nanocrystals (Pue-NCs) (20-40 nm) via formation of hydrogen bond during HPH. We confirmed the formation of hydrogen bonds by H NMR and FTIR, and observed the distribution of polymer chains by SEM and TEM. The absorption mechanisms were studied in Caco-2 cell monolayers, and the results showed that the major transport mechanism for puerarin was passive diffusion, meanwhile, for Pue-NCs, the passive transport and micropinocytosis-mediated endocytosis coexisted. The absolute bioavailability of Pue-NCs was 35.28%, which was 11.54 folds compared to that of puerarin. Therapeutic equivalence was demonstrated between Pue-NCs and puerarin injection at 50 mg/kg and 15 mg/kg, respectively, in isoproterenol-induced myocardial ischemia model. This study provides a novel strategy for preparing ultra-small nanocrystals by HPH to increase bioavailability of poorly soluble drugs.

摘要

较差的水溶性和低生物利用度阻碍了大约 70%新合成化合物的临床应用。纳米晶体技术已成为通过提高溶解度来提高生物利用度的首选方法。然而,生产具有超小粒径的纳米晶体以进一步提高生物利用度的程度仍然具有挑战性。在此,我们通过 HPH 过程中氢键的形成构建了超小葛根素纳米晶体(Pue-NCs)(20-40nm)。我们通过 1H NMR 和 FTIR 证实了氢键的形成,并通过 SEM 和 TEM 观察了聚合物链的分布。在 Caco-2 细胞单层中研究了吸收机制,结果表明葛根素的主要转运机制是被动扩散,而对于 Pue-NCs,被动转运和微绒毛介导的内吞作用共存。Pue-NCs 的绝对生物利用度为 35.28%,与葛根素相比提高了 11.54 倍。在异丙肾上腺素诱导的心肌缺血模型中,分别以 50mg/kg 和 15mg/kg 的剂量给予 Pue-NCs 和葛根素注射液,证明了两者具有治疗等效性。本研究为通过 HPH 制备超小纳米晶体以提高难溶性药物的生物利用度提供了一种新策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验