Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute (J.C.G., A.H., R.S., M.S., A.A., G.O.E., D.A.M., R.T.L.), Harvard University, Cambridge, MA.
Department of Cardiology, Boston Children's Hospital, MA (J.C.G., R.O., V.J.B.).
Circulation. 2020 Jan 28;141(4):285-300. doi: 10.1161/CIRCULATIONAHA.119.044205. Epub 2019 Nov 11.
Current differentiation protocols to produce cardiomyocytes from human induced pluripotent stem cells (iPSCs) are capable of generating highly pure cardiomyocyte populations as determined by expression of cardiac troponin T. However, these cardiomyocytes remain immature, more closely resembling the fetal state, with a lower maximum contractile force, slower upstroke velocity, and immature mitochondrial function compared with adult cardiomyocytes. Immaturity of iPSC-derived cardiomyocytes may be a significant barrier to clinical translation of cardiomyocyte cell therapies for heart disease. During development, cardiomyocytes undergo a shift from a proliferative state in the fetus to a more mature but quiescent state after birth. The mechanistic target of rapamycin (mTOR)-signaling pathway plays a key role in nutrient sensing and growth. We hypothesized that transient inhibition of the mTOR-signaling pathway could lead cardiomyocytes to a quiescent state and enhance cardiomyocyte maturation.
Cardiomyocytes were differentiated from 3 human iPSC lines using small molecules to modulate the Wnt pathway. Torin1 (0 to 200 nmol/L) was used to inhibit the mTOR pathway at various time points. We quantified contractile, metabolic, and electrophysiological properties of matured iPSC-derived cardiomyocytes. We utilized the small molecule inhibitor, pifithrin-α, to inhibit p53 signaling, and nutlin-3a, a small molecule inhibitor of MDM2 (mouse double minute 2 homolog) to upregulate and increase activation of p53.
Torin1 (200 nmol/L) increased the percentage of quiescent cells (G phase) from 24% to 48% compared with vehicle control (<0.05). Torin1 significantly increased expression of selected sarcomere proteins (including TNNI3 [troponin I, cardiac muscle]) and ion channels (including Kir2.1) in a dose-dependent manner when Torin1 was initiated after onset of cardiomyocyte beating. Torin1-treated cells had an increased relative maximum force of contraction, increased maximum oxygen consumption rate, decreased peak rise time, and increased downstroke velocity. Torin1 treatment increased protein expression of p53, and these effects were inhibited by pifithrin-α. In contrast, nutlin-3a independently upregulated p53, led to an increase in TNNI3 expression and worked synergistically with Torin1 to further increase expression of both p53 and TNNI3.
Transient treatment of human iPSC-derived cardiomyocytes with Torin1 shifts cells to a quiescent state and enhances cardiomyocyte maturity.
目前,从人诱导多能干细胞(iPSC)中产生心肌细胞的分化方案能够通过心肌肌钙蛋白 T 的表达产生高度纯化的心肌细胞群体。然而,这些心肌细胞仍然不成熟,更类似于胎儿状态,与成人心肌细胞相比,最大收缩力较低,上升速度较慢,线粒体功能不成熟。iPSC 衍生的心肌细胞的不成熟可能是心肌细胞疗法治疗心脏病向临床转化的一个重大障碍。在发育过程中,心肌细胞从胎儿的增殖状态转变为出生后的更成熟但静止的状态。雷帕霉素(mTOR)信号通路的机械靶标在营养感应和生长中发挥关键作用。我们假设瞬时抑制 mTOR 信号通路可以使心肌细胞进入静止状态并增强心肌细胞成熟。
使用小分子调节 Wnt 途径从 3 个人 iPSC 系中分化出心肌细胞。在不同时间点使用 Torin1(0 至 200nmol/L)抑制 mTOR 通路。我们量化了成熟的 iPSC 衍生心肌细胞的收缩、代谢和电生理特性。我们利用小分子抑制剂 pifithrin-α 抑制 p53 信号,利用小分子抑制剂 nutlin-3a 上调和增加 MDM2(鼠双微体 2 同源物)的激活,从而上调和增加 p53 的激活。
与载体对照相比(<0.05),Torin1(200nmol/L)将静止细胞(G 期)的百分比从 24%增加到 48%。Torin1 以剂量依赖性方式显著增加了选定的肌节蛋白(包括 TNNI3[肌钙蛋白 I,心肌])和离子通道(包括 Kir2.1)的表达,当 Torin1 在心肌细胞搏动开始后开始时。Torin1 处理的细胞的相对最大收缩力增加,最大耗氧量增加,峰值上升时间减少,下降速度增加。Torin1 处理增加了 p53 的蛋白表达,pifithrin-α 抑制了这些作用。相比之下,nutlin-3a 独立地上调了 p53,导致 TNNI3 表达增加,并与 Torin1 协同作用,进一步增加了 p53 和 TNNI3 的表达。
瞬时用 Torin1 处理人 iPSC 衍生的心肌细胞可使细胞进入静止状态并增强心肌细胞成熟。