Suppr超能文献

个性化医疗决策:将荟萃分析治疗比较与患者特定风险和偏好相结合。

Personalizing Medical Treatment Decisions: Integrating Meta-analytic Treatment Comparisons with Patient-Specific Risks and Preferences.

机构信息

Department of Management Science and Engineering, Stanford University, Stanford, CA, USA.

Center for Primary Care, Harvard Medical School, Boston, MA, USA.

出版信息

Med Decis Making. 2019 Nov;39(8):998-1009. doi: 10.1177/0272989X19884927. Epub 2019 Nov 9.

Abstract

Network meta-analyses (NMAs) that compare treatments for a given condition allow physicians to identify which treatments have higher or lower probabilities of reducing the risks of disease complications or increasing the risks of treatment side effects. Translating these data into personalized treatment plans requires integration of NMA data with patient-specific pretreatment risk estimates and preferences regarding treatment objectives and acceptable risks. We introduce a modeling framework to integrate data probabilistically from NMAs with data on individualized patient risk estimates for disease outcomes, treatment preferences (such as willingness to incur greater side effects for increased life expectancy), and risk preferences. We illustrate the modeling framework by creating personalized plans for antipsychotic drug treatment and evaluating their effectiveness and cost-effectiveness. Compared with treating all patients with the drug that yields the greatest quality-adjusted life-years (QALYs) on average (amisulpride), personalizing the selection of antipsychotic drugs for schizophrenia patients over the next 5 years would be expected to yield 0.33 QALYs (95% credible interval [crI]: 0.30-0.37) per patient at an incremental cost of $4849/QALY gained (95% crI: dominant-$12,357), versus 0.29 and 0.04 QALYs per patient when accounting for only risks or preferences, respectively, but not both. The analysis uses a linear, additive utility function to reflect patient treatment preferences and does not consider potential variations in patient time discounting. Our modeling framework rigorously computes what physicians normally have to do mentally. By integrating 3 key components of personalized medicine-evidence on efficacy, patient risks, and patient preferences-the modeling framework can provide personalized treatment decisions to improve patient health outcomes.

摘要

网络荟萃分析(NMAs)比较了针对特定疾病的治疗方法,使医生能够确定哪些治疗方法降低疾病并发症风险或增加治疗副作用风险的可能性更高或更低。将这些数据转化为个性化治疗计划需要将 NMA 数据与患者特定的预处理风险估计以及对治疗目标和可接受风险的偏好相结合。我们引入了一个建模框架,将来自 NMAs 的数据与个体化患者疾病结局风险估计、治疗偏好(例如,为增加预期寿命而愿意承担更大的副作用)以及风险偏好的数据进行概率整合。我们通过创建抗精神病药物治疗的个性化计划并评估其有效性和成本效益来演示建模框架。与用平均产生最大质量调整生命年(QALYs)的药物治疗所有患者(氨磺必利)相比,在接下来的 5 年内对精神分裂症患者选择抗精神病药物进行个性化选择,预计每个患者会产生 0.33 QALYs(95%可信区间[crI]:0.30-0.37),增量成本为 4849 美元/QALY(95% crI:占优-12357 美元),而仅考虑风险或偏好时,每个患者分别为 0.29 和 0.04 QALYs,但两者都不考虑。该分析使用线性、加性效用函数来反映患者的治疗偏好,并且不考虑患者时间贴现的潜在变化。我们的建模框架严格计算了医生通常需要进行的思维过程。通过整合个性化医学的 3 个关键组成部分——疗效证据、患者风险和患者偏好——该建模框架可以提供个性化的治疗决策,以改善患者的健康结果。

相似文献

1
Personalizing Medical Treatment Decisions: Integrating Meta-analytic Treatment Comparisons with Patient-Specific Risks and Preferences.
Med Decis Making. 2019 Nov;39(8):998-1009. doi: 10.1177/0272989X19884927. Epub 2019 Nov 9.
2
Partial Personalization of Medical Treatment Decisions: Adverse Effects and Possible Solutions.
Med Decis Making. 2022 Jan;42(1):8-16. doi: 10.1177/0272989X211013773. Epub 2021 May 22.
4
Personalization of Medical Treatment Decisions: Simplifying Complex Models while Maintaining Patient Health Outcomes.
Med Decis Making. 2022 May;42(4):450-460. doi: 10.1177/0272989X211037921. Epub 2021 Aug 20.
9
Prophylactic antibiotics for adults with chronic obstructive pulmonary disease: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Jan 15;1(1):CD013198. doi: 10.1002/14651858.CD013198.pub2.
10

引用本文的文献

2
Personalization of Medical Treatment Decisions: Simplifying Complex Models while Maintaining Patient Health Outcomes.
Med Decis Making. 2022 May;42(4):450-460. doi: 10.1177/0272989X211037921. Epub 2021 Aug 20.
3
Partial Personalization of Medical Treatment Decisions: Adverse Effects and Possible Solutions.
Med Decis Making. 2022 Jan;42(1):8-16. doi: 10.1177/0272989X211013773. Epub 2021 May 22.
4
Focus on disability-free life expectancy: implications for health-related quality of life.
Qual Life Res. 2021 Aug;30(8):2187-2195. doi: 10.1007/s11136-021-02809-1. Epub 2021 Mar 17.

本文引用的文献

1
Methods for exploring and eliciting patient preferences in the medical product lifecycle: a literature review.
Drug Discov Today. 2019 Jul;24(7):1324-1331. doi: 10.1016/j.drudis.2019.05.001. Epub 2019 May 8.
2
Prevalence of psychotic disorders and its association with methodological issues. A systematic review and meta-analyses.
PLoS One. 2018 Apr 12;13(4):e0195687. doi: 10.1371/journal.pone.0195687. eCollection 2018.
6
MCDA swing weighting and discrete choice experiments for elicitation of patient benefit-risk preferences: a critical assessment.
Pharmacoepidemiol Drug Saf. 2017 Dec;26(12):1483-1491. doi: 10.1002/pds.4255. Epub 2017 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验