Suppr超能文献

静息状态和持续运动任务期间的脑微循环血流动力学

Cerebral Microcirculatory Blood Flow Dynamics During Rest and a Continuous Motor Task.

作者信息

Müller Martin, Österreich Mareike

机构信息

Neurovascular Laboratory, Neurocenter, Lucerne Kantonsspital, Lucerne, Switzerland.

出版信息

Front Physiol. 2019 Oct 24;10:1355. doi: 10.3389/fphys.2019.01355. eCollection 2019.

Abstract

To examine the brain's microcirculatory response over the course of a continuous 5-min elbow movement task in order to estimate its potential role in grading vaso-neural coupling compared to the macrocirculatory response. We simultaneously recorded cerebral blood flow velocity (CBFV), changes in oxygenated/deoxygenated hemoglobin concentrations ([oxHb], [deoxHb]), blood pressure (BP), and end-tidal CO over 5-min periods of rest and left elbow movements in 24 healthy persons (13 women and 11 men of mean age ± SD, 38 ± 11 years). A low frequency range (0.07-0.15 Hz) was used for analysis by transfer function estimates of phase and gain. Elbow movement led to a small BP increase (mean BP at rest 83 mm Hg, at movement 87; < 0.01) and a small ETCO decrease (at rest 44.6 mm Hg, at movement 41.7 mm Hg; < 0.01). Further, it increased BP-[oxHb] phase from 55° (both sides) to 74° (right; < 0.05)/69° (left; < 0.05), and BP-[deoxHb] phase from 264° (right)/270° (left) to 288° (right; < 0.05)/297° (left; = 0.09). The cerebral mean transit time at 0.1 Hz of 5.6 s of rest remained unchanged by movement. Elbow movement significantly decreased BP-CBFV gain on both sides, and BP-CBFV phase only on the right side ( = 0.05). Elbow movement leads to an increased time delay between BP and [oxHb]/[deoxHb] while leaving the cerebral mean transit time unchanged. Phase shifting is usually the more robust parameter when using a transfer function to estimate dynamic cerebral autoregulation; phase shifting at the microcirculatory level seems to be a better marker of VNC-induced changes than phase shifting between BP and CBFV.

摘要

为了评估大脑在持续5分钟的肘部运动任务过程中的微循环反应,以估计其在分级血管神经耦合方面相对于大循环反应的潜在作用。我们在24名健康人(13名女性和11名男性,平均年龄±标准差,38±11岁)休息和左肘部运动的5分钟时间段内,同时记录脑血流速度(CBFV)、氧合/脱氧血红蛋白浓度([oxHb],[deoxHb])的变化、血压(BP)和呼气末二氧化碳分压(ETCO)。通过相位和增益的传递函数估计,使用低频范围(0.07 - 0.15 Hz)进行分析。肘部运动导致血压小幅升高(休息时平均血压83 mmHg,运动时87 mmHg;P < 0.01)和呼气末二氧化碳分压小幅降低(休息时44.6 mmHg,运动时41.7 mmHg;P < 0.01)。此外,它使血压 - [oxHb]相位从55°(双侧)增加到74°(右侧;P < 0.05)/69°(左侧;P < 0.05),血压 - [deoxHb]相位从264°(右侧)/270°(左侧)增加到288°(右侧;P < 0.05)/297°(左侧;P = 0.09)。休息时0.1 Hz的脑平均通过时间为5.6秒,运动后保持不变。肘部运动显著降低了双侧的血压 - CBFV增益,仅右侧的血压 - CBFV相位降低(P = 0.05)。肘部运动导致血压与[oxHb]/[deoxHb]之间的时间延迟增加,而脑平均通过时间不变。在使用传递函数估计动态脑自动调节时,相位偏移通常是更稳健的参数;微循环水平的相位偏移似乎比血压与CBFV之间的相位偏移更能作为血管神经耦合诱导变化的良好标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4701/6821676/339bc670522c/fphys-10-01355-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验