文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于磁电纳米颗粒的电生理神经元记录的计算评估。

In silico assessment of electrophysiological neuronal recordings mediated by magnetoelectric nanoparticles.

机构信息

Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.

Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

Sci Rep. 2022 May 19;12(1):8386. doi: 10.1038/s41598-022-12303-4.


DOI:10.1038/s41598-022-12303-4
PMID:35589877
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9120189/
Abstract

Magnetoelectric materials hold untapped potential to revolutionize biomedical technologies. Sensing of biophysical processes in the brain is a particularly attractive application, with the prospect of using magnetoelectric nanoparticles (MENPs) as injectable agents for rapid brain-wide modulation and recording. Recent studies have demonstrated wireless brain stimulation in vivo using MENPs synthesized from cobalt ferrite (CFO) cores coated with piezoelectric barium titanate (BTO) shells. CFO-BTO core-shell MENPs have a relatively high magnetoelectric coefficient and have been proposed for direct magnetic particle imaging (MPI) of brain electrophysiology. However, the feasibility of acquiring such readouts has not been demonstrated or methodically quantified. Here we present the results of implementing a strain-based finite element magnetoelectric model of CFO-BTO core-shell MENPs and apply the model to quantify magnetization in response to neural electric fields. We use the model to determine optimal MENPs-mediated electrophysiological readouts both at the single neuron level and for MENPs diffusing in bulk neural tissue for in vivo scenarios. Our results lay the groundwork for MENP recording of electrophysiological signals and provide a broad analytical infrastructure to validate MENPs for biomedical applications.

摘要

磁电材料具有变革生物医学技术的巨大潜力。在大脑中感应生物物理过程是一个特别有吸引力的应用,有望使用磁电纳米粒子 (MENP) 作为可注射剂,实现快速的全脑调制和记录。最近的研究已经证明,使用由钴铁氧体 (CFO) 核和压电钛酸钡 (BTO) 壳组成的 MENP 进行体内无线脑刺激。CFO-BTO 核壳 MENP 具有相对较高的磁电系数,已被提议用于大脑电生理学的直接磁粒子成像 (MPI)。然而,获取此类读数的可行性尚未得到证明或系统地量化。在这里,我们提出了实施 CFO-BTO 核壳 MENP 基于应变的有限元磁电模型的结果,并应用该模型来量化对神经电场的磁化响应。我们使用该模型来确定单个神经元水平和体内情况下在大块神经组织中扩散的 MENP 的最佳 MENP 介导的电生理读数。我们的结果为 MENP 记录电生理信号奠定了基础,并为 MENP 在生物医学应用中的验证提供了广泛的分析基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadd/9120189/1da807a69720/41598_2022_12303_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadd/9120189/f7cdd4d1ba0b/41598_2022_12303_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadd/9120189/00cfa971b56d/41598_2022_12303_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadd/9120189/c9995c9631b3/41598_2022_12303_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadd/9120189/62289a1e2ffd/41598_2022_12303_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadd/9120189/1da807a69720/41598_2022_12303_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadd/9120189/f7cdd4d1ba0b/41598_2022_12303_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadd/9120189/00cfa971b56d/41598_2022_12303_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadd/9120189/c9995c9631b3/41598_2022_12303_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadd/9120189/62289a1e2ffd/41598_2022_12303_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadd/9120189/1da807a69720/41598_2022_12303_Fig5_HTML.jpg

相似文献

[1]
In silico assessment of electrophysiological neuronal recordings mediated by magnetoelectric nanoparticles.

Sci Rep. 2022-5-19

[2]
Modeling of core-shell magneto-electric nanoparticles for biomedical applications: Effect of composition, dimension, and magnetic field features on magnetoelectric response.

PLoS One. 2022

[3]
Magnetoelectric nanoparticles shape modulates their electrical output.

Front Bioeng Biotechnol. 2023-8-25

[4]
Nanomedicine and nanobiotechnology applications of magnetoelectric nanoparticles.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023-3

[5]
Magnetic-field-synchronized wireless modulation of neural activity by magnetoelectric nanoparticles.

Brain Stimul. 2022

[6]
Modeling the effect of magnetoelectric nanoparticles on neuronal electrical activity: An analog circuit approach.

Biointerphases. 2024-5-1

[7]
Multiscale Modeling of Magnetoelectric Nanoparticles for the Analysis of Spatially Selective Neural Stimulation.

Adv Healthc Mater. 2024-9

[8]
Controlling action potentials with magnetoelectric nanoparticles.

Brain Stimul. 2024

[9]
Field-controlled magnetoelectric core-shell CoFeO@BaTiO nanoparticles as effective drug carriers and drug release in vitro.

Mater Sci Eng C Mater Biol Appl. 2021-2

[10]
Single-Entity Approach to Investigate Surface Charge Enhancement in Magnetoelectric Nanoparticles Induced by AC Magnetic Field Stimulation.

ACS Sens. 2021-2-26

引用本文的文献

[1]
Revolutionizing neural regeneration with smart responsive materials: Current insights and future prospects.

Bioact Mater. 2025-6-13

[2]
Catalytic Degradation of Organic Dyes Indicates Anti-Proliferative Effects of Magnetoelectric Nanoparticles.

J Electron Mater. 2025

[3]
Self-Aligned Multilayered Nitrogen Vacancy Diamond Nanoparticles for High Spatial Resolution Magnetometry of Microelectronic Currents.

Nano Lett. 2025-6-11

[4]
Foundational insights for theranostic applications of magnetoelectric nanoparticles.

Nanoscale Horiz. 2025-3-24

[5]
Magnetic Detection of Neural Activity by Nanocoil Transducers.

Nano Lett. 2024-10-23

[6]
Inference of network connectivity from temporally binned spike trains.

J Neurosci Methods. 2024-4

[7]
Direct observation of NMR transverse relaxation in nanopatterned clusters of iron oxide particles.

Magn Reson Med. 2024-2

[8]
Wireless agents for brain recording and stimulation modalities.

Bioelectron Med. 2023-9-20

[9]
Magnetoelectric nanoparticles shape modulates their electrical output.

Front Bioeng Biotechnol. 2023-8-25

[10]
Nanocomposite Hydrogels as Functional Extracellular Matrices.

Gels. 2023-2-13

本文引用的文献

[1]
Scalar Magnetometry Below 100 fT/Hz in a Microfabricated Cell.

IEEE Sens J. 2020-11

[2]
Superferromagnetic Nanoparticles Enable Order-of-Magnitude Resolution & Sensitivity Gain in Magnetic Particle Imaging.

Small Methods. 2021-11

[3]
The potential roles of excitatory-inhibitory imbalances and the repressor element-1 silencing transcription factor in aging and aging-associated diseases.

Mol Cell Neurosci. 2021-12

[4]
Low-voltage magnetoelectric coupling in membrane heterostructures.

Sci Adv. 2021-11-12

[5]
Tailored Magnetic Multicore Nanoparticles for Use as Blood Pool MPI Tracers.

Nanomaterials (Basel). 2021-6-10

[6]
In Vivo Wireless Brain Stimulation via Non-invasive and Targeted Delivery of Magnetoelectric Nanoparticles.

Neurotherapeutics. 2021-7

[7]
Nonresonant powering of injectable nanoelectrodes enables wireless deep brain stimulation in freely moving mice.

Sci Adv. 2021-1-13

[8]
Size-dependent intranasal administration of magnetoelectric nanoparticles for targeted brain localization.

Nanomedicine. 2021-2

[9]
Ultrasound Technologies for Imaging and Modulating Neural Activity.

Neuron. 2020-10-14

[10]
Colossal Magnetoelectric Effect in Core-Shell Magnetoelectric Nanoparticles.

Nano Lett. 2020-8-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索