Suppr超能文献

暴露于运动诱导的壁面剪应力下的内皮细胞中的活性氧和一氧化氮动力学

ROS and NO Dynamics in Endothelial Cells Exposed to Exercise-Induced Wall Shear Stress.

作者信息

Wang Yan-Xia, Liu Hai-Bin, Li Peng-Song, Yuan Wen-Xue, Liu Bo, Liu Shu-Tian, Qin Kai-Rong

机构信息

Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024 China.

Department of Physical Education, Dalian University of Technology, Dalian, 116024 China.

出版信息

Cell Mol Bioeng. 2018 Oct 8;12(1):107-120. doi: 10.1007/s12195-018-00557-w. eCollection 2019 Feb.

Abstract

INTRODUCTION

Intracellular reactive oxygen species (ROS) and nitric oxide (NO) levels are associated with vascular homeostasis and diseases. Exercise can modulate ROS and NO production through increasing frequency and magnitude of wall shear stress (WSS). However, the details of ROS and NO production in endothelial cells and their interplay under WSS induced by exercise at different intensities remain unclear.

METHODS

In this study, we developed an multicomponent nonrectangular flow chamber system to simulate pulsatile WSS waveforms induced by moderate and high intensity exercise. Furthermore, the dynamic responses of ROS and NO in endothelial cells and the relationship between ROS and NO were investigated under the WSS induced by different intensity exercise.

RESULTS

After exposing to WSS induced by moderate intensity exercise, endothelial cells produced more NO than those under high intensity exercise-induced WSS. In this process, ROS was found to play a dual role in the generation of intracellular NO. Under WSS induced by moderate intensity exercise, modest elevated ROS promoted NO production, whereas excessive ROS in endothelial cells exposed to WSS induced by high intensity exercise attenuated NO bioavailability. Interestingly, antioxidant N-acetylcysteine (NAC) could increase NO production under WSS induced by high intensity exercise.

CONCLUSIONS

Our results provide some cues for selecting appropriate exercise intensities and elevating benefits of exercise on endothelial function. Additionally, owing to the consistency of our results and some phenomena, this flow chamber system may serve as an exercise model of arterial vessel for future studies.

摘要

引言

细胞内活性氧(ROS)和一氧化氮(NO)水平与血管稳态及疾病相关。运动可通过增加壁面剪切应力(WSS)的频率和幅度来调节ROS和NO的产生。然而,不同强度运动诱导的WSS作用下,内皮细胞中ROS和NO产生的细节及其相互作用仍不清楚。

方法

在本研究中,我们开发了一种多组分非矩形流动腔系统,以模拟中等强度和高强度运动诱导的脉动WSS波形。此外,研究了不同强度运动诱导的WSS作用下内皮细胞中ROS和NO的动态反应以及ROS与NO之间的关系。

结果

暴露于中等强度运动诱导的WSS后,内皮细胞产生的NO比高强度运动诱导的WSS作用下的细胞更多。在此过程中,发现ROS在细胞内NO的产生中起双重作用。在中等强度运动诱导的WSS作用下,适度升高的ROS促进NO产生,而暴露于高强度运动诱导的WSS的内皮细胞中过量的ROS会减弱NO的生物利用度。有趣的是,抗氧化剂N-乙酰半胱氨酸(NAC)可在高强度运动诱导的WSS作用下增加NO的产生。

结论

我们的结果为选择合适的运动强度和提高运动对内皮功能的益处提供了一些线索。此外,由于我们的结果与一些现象具有一致性,该流动腔系统可作为未来研究的动脉血管运动模型。

相似文献

1
ROS and NO Dynamics in Endothelial Cells Exposed to Exercise-Induced Wall Shear Stress.
Cell Mol Bioeng. 2018 Oct 8;12(1):107-120. doi: 10.1007/s12195-018-00557-w. eCollection 2019 Feb.
6
In-exercise vascular shear rate during acute continuous and interval exercise: impact on endothelial function and miR-21.
J Appl Physiol (1985). 2019 Dec 1;127(6):1754-1762. doi: 10.1152/japplphysiol.00156.2019. Epub 2019 Oct 10.
8
Reactive oxygen species are involved in shear stress-induced intercellular adhesion molecule-1 expression in endothelial cells.
Arterioscler Thromb Vasc Biol. 1997 Dec;17(12):3570-7. doi: 10.1161/01.atv.17.12.3570.
9
Wall shear stress as measured in vivo: consequences for the design of the arterial system.
Med Biol Eng Comput. 2008 May;46(5):499-507. doi: 10.1007/s11517-008-0330-2.

引用本文的文献

2
Paradox of Exercise and Coronary Artery Calcification: Potential Underlying Mechanisms.
Circ Res. 2025 Jul 7;137(2):335-349. doi: 10.1161/CIRCRESAHA.125.326011. Epub 2025 Jul 3.
3
Microfluidic investigation for shear-stress-mediated repair of dysglycemia-induced endothelial cell damage.
Mechanobiol Med. 2024 Apr 29;2(3):100069. doi: 10.1016/j.mbm.2024.100069. eCollection 2024 Sep.
4
Sex Differences in the Impact of Exercise Volume on Subclinical Coronary Atherosclerosis: A Meta-Analysis.
JACC Adv. 2025 May 14;4(6 Pt 1):101786. doi: 10.1016/j.jacadv.2025.101786.
5
Treatment of endothelial cell dysfunction in atherosclerosis: a new perspective integrating traditional and modern approaches.
Front Physiol. 2025 Mar 26;16:1555118. doi: 10.3389/fphys.2025.1555118. eCollection 2025.
8
Coronary atherosclerosis in athletes: emerging concepts and preventive strategies.
Eur Heart J. 2025 Mar 7;46(10):890-903. doi: 10.1093/eurheartj/ehae927.

本文引用的文献

1
Vascular endothelial cell mechanosensing: New insights gained from biomimetic microfluidic models.
Semin Cell Dev Biol. 2017 Nov;71:106-117. doi: 10.1016/j.semcdb.2017.06.002. Epub 2017 Jun 17.
2
Low shear stress induces endothelial reactive oxygen species via the AT1R/eNOS/NO pathway.
J Cell Physiol. 2018 Feb;233(2):1384-1395. doi: 10.1002/jcp.26016. Epub 2017 Jun 14.
5
Nuclear envelope proteins Nesprin2 and LaminA regulate proliferation and apoptosis of vascular endothelial cells in response to shear stress.
Biochim Biophys Acta. 2015 May;1853(5):1165-73. doi: 10.1016/j.bbamcr.2015.02.013. Epub 2015 Feb 23.
6
Exercise improves endothelial function: a local analysis of production of nitric oxide and reactive oxygen species.
Nitric Oxide. 2015 Feb 15;45:7-14. doi: 10.1016/j.niox.2015.01.003. Epub 2015 Jan 22.
7
Acute effect of cycling intervention on carotid arterial hemodynamics: basketball athletes versus sedentary controls.
Biomed Eng Online. 2015;14 Suppl 1(Suppl 1):S17. doi: 10.1186/1475-925X-14-S1-S17. Epub 2015 Jan 9.
8
Exercise-mediated wall shear stress increases mitochondrial biogenesis in vascular endothelium.
PLoS One. 2014 Nov 6;9(11):e111409. doi: 10.1371/journal.pone.0111409. eCollection 2014.
9
Exercise training and artery function in humans: nonresponse and its relationship to cardiovascular risk factors.
J Appl Physiol (1985). 2014 Aug 15;117(4):345-52. doi: 10.1152/japplphysiol.00354.2014. Epub 2014 Jun 19.
10
Impairment of autophagy in endothelial cells prevents shear-stress-induced increases in nitric oxide bioavailability.
Can J Physiol Pharmacol. 2014 Jul;92(7):605-12. doi: 10.1139/cjpp-2014-0017. Epub 2014 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验