Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
Chemosphere. 2020 Mar;243:125317. doi: 10.1016/j.chemosphere.2019.125317. Epub 2019 Nov 6.
Metallurgical microbial electrosynthesis systems (MES) are holding great promise for simultaneous heavy metal removal and acetate production from heavy metal-contaminated and organics-barren waters. How critical parameters of strain of electrotroph, cathode potential and initial heavy metal concentration affect MES performance, however, is not yet fully understood. Heavy metal of Cu(II) and four Cu(II)-tolerant electrotrophs (Stenotrophomonas maltophilia JY1, Citrobacter sp. JY3, Pseudomonas aeruginosa JY5 and Stenotrophomonas sp. JY6) were employed to evaluate MES performance at various cathode potentials (-900 or -600 mV vs. standard hydrogen electrode) and initial Cu(II) concentrations (60-120 mg L). Each electrotrophs exhibited incremental Cu(II) removals with increased Cu(II) at -900 mV, higher than at -600 mV or in the abiotic controls. Acetate production by JY1 and JY6 decreased with the increase in initial Cu(II), compared to an initial increase and a decrease thereafter for JY3 and JY5. For each electrotrophs, the biofilms than the planktonic cells released more amounts of extracellular polymeric substances (EPS) with a compositional diversity and stronger Cu(II) complexation at -900 mV. These were higher than at -600 mV, or in the controls either under open circuit conditions or in the absence of Cu(II). This work demonstrates the interdependence of strain of electrotroph, cathode potential and initial Cu(II) on simultaneous Cu(II) removal and acetate production through the release of different amounts of EPS with diverse composites, contributing to enhancing the controlled MES for efficient recovery of value-added products from Cu(II)-contaminated and organics-barren waters.
冶金微生物电解合成系统(MES)有望同时从重金属污染和有机物贫瘠的水中去除重金属并生产乙酸盐。然而,电营养菌的菌株、阴极电势和初始重金属浓度等关键参数如何影响 MES 的性能还不完全清楚。采用铜(II)和四种铜(II)耐受电营养菌(嗜麦芽寡养单胞菌 JY1、柠檬酸杆菌 JY3、铜绿假单胞菌 JY5 和寡养单胞菌 JY6)来评估不同阴极电势(-900 或-600 mV 与标准氢电极相比)和初始 Cu(II)浓度(60-120mg/L)下的 MES 性能。在-900 mV 时,每种电营养菌的 Cu(II)去除率均随 Cu(II)的增加而增加,高于-600 mV 或在非生物对照条件下。与初始增加然后减少相比,JY1 和 JY6 的乙酸盐产量随着初始 Cu(II)的增加而减少,而 JY3 和 JY5 则相反。对于每种电营养菌,生物膜比浮游细胞释放更多的胞外聚合物物质(EPS),其组成多样性和与 Cu(II)的络合能力更强,在-900 mV 时比在-600 mV 时更强,或者在开路条件下或在没有 Cu(II)的情况下的对照中更强。这项工作表明,电营养菌的菌株、阴极电势和初始 Cu(II)之间存在相互依存关系,通过释放具有不同组成的不同量的 EPS,同时去除 Cu(II)并生产乙酸盐,有助于增强受控的 MES,从而从 Cu(II)污染和有机物贫瘠的水中有效回收增值产品。