Suppr超能文献

利用信息论对复杂网络进行详细刻画。

A detailed characterization of complex networks using Information Theory.

机构信息

Instituto de Computação, Universidade Federal de Alagoas, Maceió, Brazil.

Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

出版信息

Sci Rep. 2019 Nov 13;9(1):16689. doi: 10.1038/s41598-019-53167-5.

Abstract

Understanding the structure and the dynamics of networks is of paramount importance for many scientific fields that rely on network science. Complex network theory provides a variety of features that help in the evaluation of network behavior. However, such analysis can be confusing and misleading as there are many intrinsic properties for each network metric. Alternatively, Information Theory methods have gained the spotlight because of their ability to create a quantitative and robust characterization of such networks. In this work, we use two Information Theory quantifiers, namely Network Entropy and Network Fisher Information Measure, to analyzing those networks. Our approach detects non-trivial characteristics of complex networks such as the transition present in the Watts-Strogatz model from k-ring to random graphs; the phase transition from a disconnected to an almost surely connected network when we increase the linking probability of Erdős-Rényi model; distinct phases of scale-free networks when considering a non-linear preferential attachment, fitness, and aging features alongside the configuration model with a pure power-law degree distribution. Finally, we analyze the numerical results for real networks, contrasting our findings with traditional complex network methods. In conclusion, we present an efficient method that ignites the debate on network characterization.

摘要

理解网络的结构和动态对于依赖网络科学的许多科学领域至关重要。复杂网络理论提供了多种功能,有助于评估网络行为。然而,由于每种网络度量都有许多内在特性,因此这种分析可能会令人困惑和产生误导。另一方面,信息论方法因其能够对这些网络进行定量和稳健的描述而受到关注。在这项工作中,我们使用了两种信息论量,即网络熵和网络 Fisher 信息测度,来分析这些网络。我们的方法检测到复杂网络的非平凡特征,例如 Watts-Strogatz 模型从 k 环到随机图的转变;当我们增加 Erdős-Rényi 模型的连接概率时,从不连通到几乎必然连通网络的相变;当考虑非线性优先连接、适应度和老化特征以及具有纯幂律度分布的配置模型时,无标度网络的不同阶段。最后,我们分析了真实网络的数值结果,将我们的发现与传统的复杂网络方法进行对比。总之,我们提出了一种有效的方法,引发了关于网络特征描述的争论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f47e/6853913/a81d405aaab0/41598_2019_53167_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验