Bavassi Luz, Fuentemilla Lluís
Laboratorio de Neurociencias de la Memoria, IFIByNE - UBA, CONICET, Buenos Aires, Argentina.
Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina.
Netw Neurosci. 2024 Dec 10;8(4):1529-1544. doi: 10.1162/netn_a_00415. eCollection 2024.
Memories are thought to use coding schemes that dynamically adjust their representational structure to maximize both persistence and efficiency. However, the nature of these coding scheme adjustments and their impact on the temporal evolution of memory after initial encoding is unclear. Here, we introduce the Segregation-to-Integration Transformation (SIT) model, a network formalization that offers a unified account of how the representational structure of a memory is transformed over time. The SIT model asserts that memories initially adopt a highly modular or segregated network structure, functioning as an optimal storage buffer by balancing protection from disruptions and accommodating substantial information. Over time, a repeated combination of neural network reactivations involving activation spreading and synaptic plasticity transforms the initial modular structure into an integrated memory form, facilitating intercommunity spreading and fostering generalization. The SIT model identifies a nonlinear or inverted U-shaped function in memory evolution where memories are most susceptible to changing their representation. This time window, located early during the transformation, is a consequence of the memory's structural configuration, where the activation diffusion across the network is maximized.
记忆被认为使用编码方案,该方案会动态调整其表征结构,以实现持久性和效率的最大化。然而,这些编码方案调整的本质以及它们在初始编码后对记忆时间演变的影响尚不清楚。在这里,我们引入了从分离到整合转换(SIT)模型,这是一种网络形式化模型,它对记忆的表征结构如何随时间变化提供了统一的解释。SIT模型认为,记忆最初采用高度模块化或分离的网络结构,通过平衡免受干扰的保护和容纳大量信息来充当最佳存储缓冲器。随着时间的推移,涉及激活扩散和突触可塑性的神经网络重新激活的重复组合将初始模块化结构转变为整合的记忆形式,促进不同群体间的传播并促进泛化。SIT模型在记忆演变中识别出一种非线性或倒U形函数,其中记忆最容易改变其表征。这个时间窗口位于转换早期,是记忆结构配置的结果,此时网络中的激活扩散最大化。