Suppr超能文献

The acid phosphatases of Thermoascus crustaceus, a thermophilic fungus.

作者信息

Arnold W N, Garrison R G, Mann L C, Wallace D P

机构信息

Department of Biochemistry, School of Medicine, University of Kansas Medical Center, Kansas City 66103.

出版信息

Microbios. 1988;54(219):101-12.

PMID:3173129
Abstract

Thermoascus crustaceus, a filamentous, thermophilic ascomycete with pathogenic potential was cultured on Sabouraud's liquid medium at temperatures from 27 to 47 degrees C for periods up to 7 days. Growth rate and yield were optimal at 37 degrees C. Morphological changes were confined to the cell walls, the thickness being greatest at 47 degrees C, which were also more resistant to mechanical disruption. Significant amounts of acid phosphatase (EC 3.1.3.2) activity occurred in the spent media of all cultures but were greatest at 37 degrees C. The proportions of acid phosphatase activity which were operationally defined as soluble or bound were also documented; the optimum pH for acid phosphatase activity in all fractions was 5.0. Extracts were subjected to polyacrylamide gel electrophoresis under non-denaturing conditions and the gels were stained for acid phosphatase activity. This revealed four electrophoretically distinct acid phosphatases which had different susceptibilities to inhibition by fluoride, phosphate, or tartrate. Effects of growth temperature, or phosphate supplement in the culture medium, on the acid phosphatase isoenzyme pattern were judged to be minor. Cytochemistry at the electron microscope level indicated acid phosphatase activity on the surface, in the periplasmic space, and in the cytoplasm, but no trends with regard to growth conditions. A substantial temperature range can be tolerated by this species but it is concluded that neither the general shape of the cells nor the acid phosphatase isoenzyme pattern changes substantially; this contrasts with previously documented differences for this class of enzyme in dimorphic Sporotrix schenckii.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验