Suppr超能文献

基于模糊高斯拉索聚类的癌症数据分析

Fuzzy Gaussian Lasso clustering with application to cancer data.

机构信息

Department of Applied Mathematics, Chung Yuan Christian University, Chung-Li 32023, Taiwan.

出版信息

Math Biosci Eng. 2019 Sep 30;17(1):250-265. doi: 10.3934/mbe.2020014.

Abstract

Recently, Yang et al. (2019) proposed a fuzzy model-based Gaussian (F-MB-Gauss) clustering that combines a model-based Gaussian with fuzzy membership functions for clustering. In this paper, we further consider the F-MB-Gauss clustering with the least absolute shrinkage and selection operator (Lasso) for feature (variable) selection, termed a fuzzy Gaussian Lasso (FG-Lasso) clustering algorithm. We demonstrate that the proposed FG-Lasso is a good clustering algorithm with better choice for feature subset selection. Experimental results and comparisons actually present these good aspects of the proposed FG-Lasso clustering algorithm. Cancer is a disease with growth of abnormal cells in a body. WHO reported that it is the first or second main leading cause of death. It spreads and affects the other parts of body if there is not properly diagnosed. In the paper, we apply the proposed FG-Lasso to cancer data with good feature selection and clustering results.

摘要

最近,Yang 等人(2019 年)提出了一种基于模糊模型的高斯(F-MB-Gauss)聚类方法,该方法将基于模型的高斯与模糊隶属函数相结合,用于聚类。在本文中,我们进一步考虑了具有最小绝对收缩和选择算子(Lasso)的 F-MB-Gauss 聚类进行特征(变量)选择,称为模糊高斯 Lasso(FG-Lasso)聚类算法。我们证明了所提出的 FG-Lasso 是一种具有更好特征子集选择的优秀聚类算法。实验结果和比较实际上展示了所提出的 FG-Lasso 聚类算法的这些优点。癌症是一种异常细胞在体内生长的疾病。世界卫生组织报告称,它是死亡的第一或第二大主要原因。如果没有得到正确诊断,它会扩散并影响身体的其他部位。在本文中,我们将所提出的 FG-Lasso 应用于具有良好特征选择和聚类结果的癌症数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验