College of Communication Engineering, Jilin University, Changchun, Jilin, PR China.
Department of Neonatology, Jilin University First Hospital, Changchun, Jilin, PR China.
PLoS One. 2022 Aug 19;17(8):e0273383. doi: 10.1371/journal.pone.0273383. eCollection 2022.
Neonatal necrotizing enterocolitis (NEC) occurs worldwide and is a major source of neonatal morbidity and mortality. Researchers have developed many methods for predicting NEC diagnosis and prognosis. However, most people use statistical methods to select features, which may ignore the correlation between features. In addition, because they consider a small dimension of characteristics, they neglect some laboratory parameters such as white blood cell count, lymphocyte percentage, and mean platelet volume, which could be potentially influential factors affecting the diagnosis and prognosis of NEC. To address these issues, we include more perinatal, clinical, and laboratory information, including anemia-red blood cell transfusion and feeding strategies, and propose a ridge regression and Q-learning strategy based bee swarm optimization (RQBSO) metaheuristic algorithm for predicting NEC diagnosis and prognosis. Finally, a linear support vector machine (linear SVM), which specializes in classifying high-dimensional features, is used as a classifier. In the NEC diagnostic prediction experiment, the area under the receiver operating characteristic curve (AUROC) of dataset 1 (feeding intolerance + NEC) reaches 94.23%. In the NEC prognostic prediction experiment, the AUROC of dataset 2 (medical NEC + surgical NEC) reaches 91.88%. Additionally, the classification accuracy of the RQBSO algorithm on the NEC dataset is higher than the other feature selection algorithms. Thus, the proposed approach has the potential to identify predictors that contribute to the diagnosis of NEC and stratification of disease severity in a clinical setting.
新生儿坏死性小肠结肠炎(NEC)在全球范围内发生,是新生儿发病率和死亡率的主要原因。研究人员已经开发出许多用于预测 NEC 诊断和预后的方法。然而,大多数人使用统计方法来选择特征,这可能会忽略特征之间的相关性。此外,由于他们考虑了特征的小维度,他们忽略了一些实验室参数,如白细胞计数、淋巴细胞百分比和平均血小板体积,这些参数可能是影响 NEC 诊断和预后的潜在因素。为了解决这些问题,我们纳入了更多围产期、临床和实验室信息,包括贫血-红细胞输血和喂养策略,并提出了一种基于岭回归和 Q 学习策略的蜜蜂群优化(RQBSO)元启发式算法,用于预测 NEC 的诊断和预后。最后,使用专门用于分类高维特征的线性支持向量机(linear SVM)作为分类器。在 NEC 诊断预测实验中,数据集 1(喂养不耐受+NEC)的接收者操作特征曲线(AUROC)下面积达到 94.23%。在 NEC 预后预测实验中,数据集 2(医学 NEC+手术 NEC)的 AUROC 达到 91.88%。此外,RQBSO 算法在 NEC 数据集上的分类准确性高于其他特征选择算法。因此,该方法有可能识别有助于 NEC 诊断和疾病严重程度分层的预测因子。