Wang Shi Kai, Jia He Ming, Peng Xiao Xu
School of Mathematical Sciences, Harbin Normal University, Harbin 150025, China.
College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China.
Math Biosci Eng. 2019 Oct 24;17(1):700-724. doi: 10.3934/mbe.2020036.
This paper proposes a multi-threshold image segmentation method based on modified salp swarm algorithm (SSA). Multi-threshold image segmentation method has good segmentation effect, but the segmentation precision will be affected with the increase of threshold number. To avoid the above problem, the slap swarm optimization algorithm (SSA) is presented to choose the optimal parameters of the fitting function and we use levy flight to improve the SSA. The solutions are assessed using the Kapur's entropy, Otsu and Renyi entropy fitness function during the optimization operation. The performance of the proposed algorithm is evaluated with several reference images and compared with different group algorithms. The results have been analyzed based on the best fitness values, peak signal to noise ratio (PSNR), and feature similarity index measures (FSIM). The experimental results show that the proposed algorithm outperformed other swarm algorithms.
本文提出了一种基于改进的樽海鞘群算法(SSA)的多阈值图像分割方法。多阈值图像分割方法具有良好的分割效果,但随着阈值数量的增加,分割精度会受到影响。为避免上述问题,提出了樽海鞘群优化算法(SSA)来选择拟合函数的最优参数,并使用莱维飞行对SSA进行改进。在优化操作过程中,使用Kapur熵、大津法和Renyi熵适应度函数对解进行评估。使用几幅参考图像对所提算法的性能进行评估,并与不同组的算法进行比较。基于最佳适应度值、峰值信噪比(PSNR)和特征相似性指数度量(FSIM)对结果进行了分析。实验结果表明,所提算法优于其他群算法。