Suppr超能文献

基于樽海鞘群算法的海洋捕食者算法用于多级阈值图像分割

Boosting Marine Predators Algorithm by Salp Swarm Algorithm for Multilevel Thresholding Image Segmentation.

作者信息

Abualigah Laith, Al-Okbi Nada Khalil, Elaziz Mohamed Abd, Houssein Essam H

机构信息

Faculty of Computer Sciences and Informatics, Amman Arab University, Amman, 11953 Jordan.

School of Computer Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia.

出版信息

Multimed Tools Appl. 2022;81(12):16707-16742. doi: 10.1007/s11042-022-12001-3. Epub 2022 Mar 3.

Abstract

Pixel rating is considered one of the commonly used critical factors in digital image processing that depends on intensity. It is used to determine the optimal image segmentation threshold. In recent years, the optimum threshold has been selected with great interest due to its many applications. Several methods have been used to find the optimum threshold, including the Otsu and Kapur methods. These methods are appropriate and easy to implement to define a single or bi-level threshold. However, when they are extended to multiple levels, they will cause some problems, such as long time-consuming, the high computational cost, and the needed improvement in their accuracy. To avoid these problems and determine the optimal multilevel image segmentation threshold, we proposed a hybrid Marine Predators Algorithm (MPA) with Salp Swarm Algorithm (SSA) to determine the optimal multilevel threshold image segmentation MPASSA. The obtained solutions of the proposed method are represented using the image histogram. Several standard evaluation measures, such as (the fitness function, time consumer, Peak Signal-to-Noise Ratio, Structural Similarity Index, etc.…) are employed to evaluate the proposed segmentation method's effectiveness. Several benchmark images are used to validate the proposed algorithm's performance (MPASSA). The results showed that the proposed MPASSA got better results than other well-known optimization algorithms published in the literature.

摘要

像素评级被认为是数字图像处理中常用的关键因素之一,它取决于强度。它用于确定最佳图像分割阈值。近年来,由于其众多应用,最佳阈值的选择备受关注。已经使用了几种方法来找到最佳阈值,包括大津法和卡普尔法。这些方法适用于定义单级或双级阈值,并且易于实现。然而,当将它们扩展到多级时,会出现一些问题,例如耗时较长、计算成本高以及需要提高其准确性。为了避免这些问题并确定最佳多级图像分割阈值,我们提出了一种结合海洋捕食者算法(MPA)和樽海鞘群算法(SSA)的混合算法来确定最佳多级阈值图像分割MPASSA。所提方法获得的解用图像直方图表示。采用了几种标准评估指标,如(适应度函数、时间消耗、峰值信噪比、结构相似性指数等……)来评估所提分割方法的有效性。使用了几个基准图像来验证所提算法(MPASSA)的性能。结果表明,所提的MPASSA比文献中发表的其他著名优化算法取得了更好的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4f0/8892122/2e6b9d2b41e4/11042_2022_12001_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验