Suppr超能文献

受自然启发的优化算法及其在多阈值图像分割中的意义:全面综述

Nature-inspired optimization algorithms and their significance in multi-thresholding image segmentation: an inclusive review.

作者信息

Rai Rebika, Das Arunita, Dhal Krishna Gopal

机构信息

Department of Computer Applications, Sikkim University, Sikkim, India.

Department of Computer Science and Application, Midnapore College (Autonomous), Paschim Medinipur, West Bengal India.

出版信息

Evol Syst (Berl). 2022;13(6):889-945. doi: 10.1007/s12530-022-09425-5. Epub 2022 Feb 21.

Abstract

Multilevel Thresholding (MLT) is considered as a significant and imperative research field in image segmentation that can efficiently resolve difficulties aroused while analyzing the segmented regions of multifaceted images with complicated nonlinear conditions. MLT being a simple exponential combinatorial optimization problem is commonly phrased by means of a sophisticated objective function requirement that can only be addressed by nondeterministic approaches. Consequently, researchers are engaging Nature-Inspired Optimization Algorithms (NIOA) as an alternate methodology that can be widely employed for resolving problems related to MLT. This paper delivers an acquainted review related to novel NIOA shaped lately in last three years (2019-2021) highlighting and exploring the major challenges encountered during the development of image multi-thresholding models based on NIOA.

摘要

多阈值分割(MLT)被认为是图像分割中一个重要且必要的研究领域,它能够有效解决在分析具有复杂非线性条件的多面图像的分割区域时所引发的难题。MLT作为一个简单的指数组合优化问题,通常通过一个复杂的目标函数要求来表述,而这只能通过非确定性方法来解决。因此,研究人员正在采用自然启发式优化算法(NIOA)作为一种替代方法,该方法可广泛用于解决与MLT相关的问题。本文对过去三年(2019 - 2021年)最近形成的新型NIOA进行了综述,重点介绍并探讨了基于NIOA的图像多阈值分割模型开发过程中遇到的主要挑战。

相似文献

3
Archimedes Optimizer: Theory, Analysis, Improvements, and Applications.阿基米德优化器:理论、分析、改进及应用
Arch Comput Methods Eng. 2023;30(4):2543-2578. doi: 10.1007/s11831-022-09876-8. Epub 2023 Jan 5.

引用本文的文献

10
A Comprehensive Survey on Arithmetic Optimization Algorithm.算术优化算法综合综述
Arch Comput Methods Eng. 2023;30(5):3379-3404. doi: 10.1007/s11831-023-09902-3. Epub 2023 Mar 15.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验