College of Computer Science, Harbin Finance University, Harbin 150030, China.
Math Biosci Eng. 2021 Aug 24;18(6):7110-7142. doi: 10.3934/mbe.2021353.
Multilevel thresholding is a reliable and efficacious method for image segmentation that has recently received widespread recognition. However, the computational complexity of the multilevel thresholding method increases as the threshold level increases, which causes the low segmentation accuracy of this method. To overcome this shortcoming, this paper presents a moth-flame optimization (MFO) established on Kapur's entropy to clarify the multilevel thresholding image segmentation. The MFO adjusts exploration and exploitation to achieve the best fitness value. To validate the overall performance, MFO is compared with other algorithms to realize the global optimal solution to maximize the target value of Kapur's entropy. Some critical evaluation indicators are used to determine the segmentation effect and optimization performance of each algorithm. The experimental results indicate that MFO has a faster convergence speed, higher calculation accuracy, better segmentation effect and better stability.
多阈值处理是一种可靠且有效的图像分割方法,最近得到了广泛的认可。然而,多阈值处理方法的计算复杂度随着阈值级别的增加而增加,这导致该方法的低分割精度。为了克服这一缺点,本文提出了一种基于 Kapur 熵的 moth-flame 优化(MFO)方法,以阐明多阈值图像分割。MFO 调整探索和利用以达到最佳的适应度值。为了验证整体性能,将 MFO 与其他算法进行比较,以实现最大化 Kapur 熵目标值的全局最优解。使用一些关键评估指标来确定每个算法的分割效果和优化性能。实验结果表明,MFO 具有更快的收敛速度、更高的计算精度、更好的分割效果和更好的稳定性。