Suppr超能文献

在并行3D打印微流控装置中高通量生产微米级双乳液和微凝胶胶囊

High-Throughput Production of Micrometer Sized Double Emulsions and Microgel Capsules in Parallelized 3D Printed Microfluidic Devices.

作者信息

Jans Alexander, Lölsberg Jonas, Omidinia-Anarkoli Abdolrahman, Viermann Robin, Möller Martin, De Laporte Laura, Wessling Matthias, Kuehne Alexander J C

机构信息

DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52076 Aachen, Germany.

AVT-Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany.

出版信息

Polymers (Basel). 2019 Nov 15;11(11):1887. doi: 10.3390/polym11111887.

Abstract

Double emulsions are useful geometries as templates for core-shell particles, hollow sphere capsules, and for the production of biomedical delivery vehicles. In microfluidics, two approaches are currently being pursued for the preparation of microfluidic double emulsion devices. The first approach utilizes soft lithography, where many identical double-flow-focusing channel geometries are produced in a hydrophobic silicone matrix. This technique requires selective surface modification of the respective channel sections to facilitate alternating wetting conditions of the channel walls to obtain monodisperse double emulsion droplets. The second technique relies on tapered glass capillaries, which are coaxially aligned, so that double emulsions are produced after flow focusing of two co-flowing streams. This technique does not require surface modification of the capillaries, as only the continuous phase is in contact with the emulsifying orifice; however, these devices cannot be fabricated in a reproducible manner, which results in polydisperse double emulsion droplets, if these capillary devices were to be parallelized. Here, we present 3D printing as a means to generate four identical and parallelized capillary device architectures, which produce monodisperse double emulsions with droplet diameters in the range of 500 µm. We demonstrate high throughput synthesis of W/O/W and O/W/O double emulsions, without the need for time-consuming surface treatment of the 3D printed microfluidic device architecture. Finally, we show that we can apply this device platform to generate hollow sphere microgels.

摘要

双乳液作为核壳颗粒、空心球胶囊以及生物医学递送载体生产的模板,是一种有用的几何结构。在微流控领域,目前有两种方法用于制备微流控双乳液装置。第一种方法利用软光刻技术,在疏水硅酮基质中制造许多相同的双流聚焦通道几何结构。该技术需要对各个通道部分进行选择性表面改性,以促进通道壁的交替润湿条件,从而获得单分散的双乳液液滴。第二种技术依赖于同轴排列的锥形玻璃毛细管,这样在两股并流流体聚焦后会产生双乳液。该技术不需要对毛细管进行表面改性,因为只有连续相与乳化孔口接触;然而,如果要将这些毛细管装置并行化,这些装置无法以可重复的方式制造,这会导致双乳液液滴多分散。在此,我们展示了3D打印作为一种生成四种相同且并行化的毛细管装置架构的方法,这些架构可产生直径在500 µm范围内的单分散双乳液。我们展示了W/O/W和O/W/O双乳液的高通量合成,无需对3D打印的微流控装置架构进行耗时的表面处理。最后,我们表明我们可以应用这个装置平台来生成空心球微凝胶。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验