Suppr超能文献

整合影像学、组织学和遗传学特征预测非小细胞肺癌的肿瘤突变负荷。

Integrating Imaging, Histologic, and Genetic Features to Predict Tumor Mutation Burden of Non-Small-Cell Lung Cancer.

机构信息

Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China; Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA.

Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA.

出版信息

Clin Lung Cancer. 2020 May;21(3):e151-e163. doi: 10.1016/j.cllc.2019.10.016. Epub 2019 Oct 25.

Abstract

BACKGROUND

Immune checkpoint inhibitors have dramatically changed the landscape of therapeutic management of non-small-cell lung cancer (NSCLC). Tumor mutation burden (TMB) is an important biomarker of the response to cancer immunotherapy. We investigated the relationship between TMB and the imaging, histologic, and genetic features in NSCLC.

MATERIALS AND METHODS

We evaluated the associations between the semantic imaging features (7 quantitative or semiquantitative imaging features and 13 qualitative features that reflect the tumor characteristics) and TMB and built an imaging signature for TMB using logistic regression. Finally, we integrated the imaging signature, histologic type, and TP53 genotype into a composite model.

RESULTS

Among 89 patients, 37 (41.6%) had low TMB and 52 (58.4%) had high TMB. Tumors with high TMB were more prevalent in squamous cell carcinoma (P = .017) and those with a TP53 mutation (P < .0001). The absence of concavity was significantly associated with higher TMB (P = .008). An imaging signature containing 5 features, including concavity, border definition, spiculation, thickened adjacent bronchovascular bundle and size, achieved good discrimination between tumors with low and high TMB (area under the curve [AUC], 0.79; 95% confidence interval [CI], 0.69-0.89). The composite model integrating the imaging signature, histologic type, and TP53 genotype improved the classification (AUC, 0.89; 95% CI, 0.82-0.95) compared with the imaging signature alone using the DeLong test (P = .012). The composite model achieved a high sensitivity of 95% and a specificity of 62%.

CONCLUSION

Specific computed tomography features are associated with TMB in NSCLC, and the integration of imaging, histologic, and genetic information might allow for accurate prediction of TMB.

摘要

背景

免疫检查点抑制剂极大地改变了非小细胞肺癌(NSCLC)的治疗管理格局。肿瘤突变负担(TMB)是癌症免疫治疗反应的一个重要生物标志物。我们研究了 TMB 与 NSCLC 的影像学、组织学和遗传学特征之间的关系。

材料和方法

我们评估了语义影像学特征(7 个定量或半定量影像学特征和 13 个反映肿瘤特征的定性特征)与 TMB 之间的相关性,并使用逻辑回归建立了 TMB 的影像学特征。最后,我们将影像学特征、组织学类型和 TP53 基因型整合到一个综合模型中。

结果

在 89 名患者中,37 名(41.6%)TMB 较低,52 名(58.4%)TMB 较高。高 TMB 更常见于鳞状细胞癌(P =.017)和存在 TP53 突变的肿瘤(P <.0001)。无凹陷与较高的 TMB 显著相关(P =.008)。包含 5 个特征的影像学特征,包括凹陷、边界定义、分叶、增厚的相邻支气管血管束和大小,能够很好地区分 TMB 低和高的肿瘤(曲线下面积 [AUC],0.79;95%置信区间 [CI],0.69-0.89)。与单独使用影像学特征相比,整合影像学特征、组织学类型和 TP53 基因型的综合模型改善了分类(AUC,0.89;95%CI,0.82-0.95),DeLong 检验显示差异有统计学意义(P =.012)。综合模型的敏感性为 95%,特异性为 62%。

结论

特定的 CT 特征与 NSCLC 的 TMB 相关,影像学、组织学和遗传信息的整合可能能够准确预测 TMB。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验