Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, USA.
Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
Nat Chem Biol. 2020 Jan;16(1):95-103. doi: 10.1038/s41589-019-0392-5. Epub 2019 Nov 18.
Microbiota generates millimolar concentrations of short-chain fatty acids (SCFAs) that can modulate host metabolism, immunity and susceptibility to infection. Butyrate in particular can function as a carbon source and anti-inflammatory metabolite, but the mechanism by which it inhibits pathogen virulence has been elusive. Using chemical proteomics, we found that several virulence factors encoded by Salmonella pathogenicity island-1 (SPI-1) are acylated by SCFAs. Notably, a transcriptional regulator of SPI-1, HilA, was acylated on several key lysine residues. Subsequent incorporation of stable butyryl-lysine analogs using CRISPR-Cas9 gene editing and unnatural amino acid mutagenesis revealed that site-specific modification of HilA impacts its genomic occupancy, expression of SPI-1 genes and attenuates Salmonella enterica serovar Typhimurium invasion of epithelial cells, as well as dissemination in vivo. Moreover, a multiple-site HilA lysine acylation mutant strain of S. Typhimurium was resistant to butyrate inhibition ex vivo and microbiota attenuation in vivo. Our results suggest that prominent microbiota-derived metabolites may directly acylate virulence factors to inhibit microbial pathogenesis in vivo.
微生物群落产生毫摩尔浓度的短链脂肪酸 (SCFAs),可以调节宿主代谢、免疫和感染易感性。特别是丁酸盐可以作为碳源和抗炎代谢物,但它抑制病原体毒力的机制一直难以捉摸。使用化学蛋白质组学,我们发现沙门氏菌致病性岛-1 (SPI-1) 编码的几种毒力因子被 SCFAs 酰化。值得注意的是,SPI-1 的转录调节因子 HilA 在几个关键赖氨酸残基上被酰化。随后使用 CRISPR-Cas9 基因编辑和非天然氨基酸诱变将稳定的丁酰-赖氨酸类似物掺入,表明 HilA 的特异性修饰会影响其基因组占据、SPI-1 基因的表达,并减弱沙门氏菌肠炎 Typhimurium 对上皮细胞的侵袭以及体内的传播。此外,鼠伤寒沙门氏菌的 HilA 多个赖氨酸酰化突变株在体外对丁酸盐抑制和体内微生物群落衰减具有抗性。我们的研究结果表明,主要的微生物衍生代谢物可能直接酰化毒力因子,从而抑制体内的微生物发病机制。