Suppr超能文献

钠-葡萄糖协同转运蛋白抑制剂的肾脏作用。

Renal Effects of Sodium-Glucose Co-Transporter Inhibitors.

机构信息

Department of Medicine, Division of Nephrology-Hypertension, University of California, San Diego, and VA San Diego Healthcare System, San Diego, Calif.

Department of Medicine, Division of Nephrology-Hypertension, University of California, San Diego, and VA San Diego Healthcare System, San Diego, Calif.

出版信息

Am J Cardiol. 2019 Dec 15;124 Suppl 1(Suppl 1):S28-S35. doi: 10.1016/j.amjcard.2019.10.027.

Abstract

Sodium-glucose co-transporter 2 (SGLT2) inhibitors immediately reduce the glomerular filtration rate (GFR) in patients with type 2 diabetes mellitus. When given chronically, they confer benefit by markedly slowing the rate at which chronic kidney disease progresses and are the first agents to do so since the advent of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs). Salutary effects on the kidney were first demonstrated in cardiovascular outcomes trials and have now emerged from trials enriched in subjects with type 2 diabetes mellitus and chronic kidney disease. A simple model that unifies the immediate and long-term effects of SGLT2 inhibitors on kidney function is based on the assumption that diabetic hyperfiltration puts the kidney at long-term risk and evidence that hyperfiltration is an immediate response to a reduced signal for tubuloglomerular feedback, which occurs to the extent that SGLT2 activity mediates a primary increase in sodium and fluid reabsorption by the proximal tubule. This model will likely continue to serve as a useful description accounting for the beneficial effect of SGLT2 inhibitors on the diabetic kidney, similar to the hemodynamic explanation for the benefit of ACEIs and ARBs. A more complex model will be required to incorporate positive interactions between SGLT2 and sodium-hydrogen exchanger 3 in the proximal tubule and between sodium-glucose co-transporter 1 (SGLT1) and nitric oxide synthase in the macula densa. The implication of these latter nuances for day-to-day clinical medicine remains to be determined.

摘要

钠-葡萄糖共转运蛋白 2(SGLT2)抑制剂可立即降低 2 型糖尿病患者的肾小球滤过率(GFR)。长期使用时,它们通过显著减缓慢性肾脏病的进展速度而带来益处,这是自血管紧张素转换酶抑制剂(ACEIs)和血管紧张素受体阻滞剂(ARBs)问世以来的第一种此类药物。在心血管结局试验中首次证明了对肾脏的有益作用,现在已经从富含 2 型糖尿病和慢性肾脏病患者的试验中显现出来。一个统一了 SGLT2 抑制剂对肾功能的即时和长期影响的简单模型基于这样的假设,即糖尿病性高滤过使肾脏长期处于风险之中,并且有证据表明高滤过是对管球反馈信号减弱的即时反应,这种反应的程度取决于 SGLT2 活性介导的近端小管中钠和液体的主动重吸收的主要增加。该模型可能继续作为解释 SGLT2 抑制剂对糖尿病肾脏有益作用的有用描述,类似于对 ACEIs 和 ARBs 有益作用的血流动力学解释。需要一个更复杂的模型来纳入近端小管中 SGLT2 和钠-氢交换器 3 之间以及致密斑中 SGLT1 和一氧化氮合酶之间的积极相互作用。这些后者的细微差别对日常临床医学的影响仍有待确定。

相似文献

1
Renal Effects of Sodium-Glucose Co-Transporter Inhibitors.
Am J Cardiol. 2019 Dec 15;124 Suppl 1(Suppl 1):S28-S35. doi: 10.1016/j.amjcard.2019.10.027.
2
The tubular hypothesis of nephron filtration and diabetic kidney disease.
Nat Rev Nephrol. 2020 Jun;16(6):317-336. doi: 10.1038/s41581-020-0256-y. Epub 2020 Mar 9.
3
Changes in Proximal Tubular Reabsorption Modulate Microvascular Regulation via the TGF System.
Int J Mol Sci. 2022 Sep 23;23(19):11203. doi: 10.3390/ijms231911203.
5
Evaluation of renal and cardiovascular protection mechanisms of SGLT2 inhibitors: model-based analysis of clinical data.
Am J Physiol Renal Physiol. 2018 Nov 1;315(5):F1295-F1306. doi: 10.1152/ajprenal.00202.2018. Epub 2018 Jul 18.
6
SGLT2 Inhibitors and the Diabetic Kidney.
Diabetes Care. 2016 Aug;39 Suppl 2:S165-71. doi: 10.2337/dcS15-3006.
7
Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: targeting the renal tubule in diabetes.
Am J Kidney Dis. 2014 Jul;64(1):16-24. doi: 10.1053/j.ajkd.2014.02.010. Epub 2014 Mar 25.
8
Renal Protection with SGLT2 Inhibitors: Effects in Acute and Chronic Kidney Disease.
Curr Diab Rep. 2022 Jan;22(1):39-52. doi: 10.1007/s11892-021-01442-z. Epub 2022 Feb 3.
10
Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition.
Diabetologia. 2017 Feb;60(2):215-225. doi: 10.1007/s00125-016-4157-3. Epub 2016 Nov 22.

引用本文的文献

1
Modern Challenges in Type 2 Diabetes: Balancing New Medications with Multifactorial Care.
Biomedicines. 2024 Sep 7;12(9):2039. doi: 10.3390/biomedicines12092039.
2
Taboo in cardiology: renin-angiotensin-aldosterone system antagonists worsening renal failure.
Eur Heart J Suppl. 2024 Apr 17;26(Suppl 1):i49-i52. doi: 10.1093/eurheartjsupp/suae017. eCollection 2024 Apr.
3
Renal handling of albumin in rats with early stage diabetes: A theoretical analysis.
J Physiol. 2024 Jul;602(14):3575-3592. doi: 10.1113/JP286245. Epub 2024 Jun 10.
4
SGLT2-independent effects of canagliflozin on NHE3 and mitochondrial complex I activity inhibit proximal tubule fluid transport and albumin uptake.
Am J Physiol Renal Physiol. 2024 Jun 1;326(6):F1041-F1053. doi: 10.1152/ajprenal.00005.2024. Epub 2024 Apr 25.
5
Evaluation and post-transplant management of children after multi-organ-with-kidney transplantation.
Pediatr Nephrol. 2024 Oct;39(10):2875-2885. doi: 10.1007/s00467-024-06336-2. Epub 2024 Mar 14.
8
Intrarenal Mechanisms of Sodium-Glucose Cotransporter-2 Inhibitors on Tubuloglomerular Feedback and Natriuresis.
Endocrinol Metab (Seoul). 2023 Aug;38(4):359-372. doi: 10.3803/EnM.2023.1764. Epub 2023 Jul 24.
9
Functional and Clinical Importance of SGLT2-inhibitors in Frailty: From the Kidney to the Heart.
Hypertension. 2023 Sep;80(9):1800-1809. doi: 10.1161/HYPERTENSIONAHA.123.20598. Epub 2023 Jul 5.
10
Novel Drugs for the Management of Diabetes Kidney Transplant Patients: A Literature Review.
Life (Basel). 2023 May 26;13(6):1265. doi: 10.3390/life13061265.

本文引用的文献

1
Effect of renal tubule-specific knockdown of the Na/H exchanger NHE3 in Akita diabetic mice.
Am J Physiol Renal Physiol. 2019 Aug 1;317(2):F419-F434. doi: 10.1152/ajprenal.00497.2018. Epub 2019 Jun 5.
3
Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy.
N Engl J Med. 2019 Jun 13;380(24):2295-2306. doi: 10.1056/NEJMoa1811744. Epub 2019 Apr 14.
4
Macula Densa SGLT1-NOS1-Tubuloglomerular Feedback Pathway, a New Mechanism for Glomerular Hyperfiltration during Hyperglycemia.
J Am Soc Nephrol. 2019 Apr;30(4):578-593. doi: 10.1681/ASN.2018080844. Epub 2019 Mar 13.
7
SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1.
Am J Physiol Renal Physiol. 2019 Jan 1;316(1):F173-F185. doi: 10.1152/ajprenal.00462.2018. Epub 2018 Nov 14.
9
Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes.
N Engl J Med. 2019 Jan 24;380(4):347-357. doi: 10.1056/NEJMoa1812389. Epub 2018 Nov 10.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验