Suppr超能文献

不同地面和污染物条件下鞋类防滑性能的可推广性

Generalizability of Footwear Traction Performance across Flooring and Contaminant Conditions.

作者信息

Chanda Arnab, Jones Taylor G, Beschorner Kurt E

机构信息

Department of Bioengineering, University of Pittsburgh.

出版信息

IISE Trans Occup Ergon Hum Factors. 2018;6(2):98-108. doi: 10.1080/24725838.2018.1517702. Epub 2018 Dec 11.

Abstract

BACKGROUND

To prevent slip and fall events at the workplace, mechanical slip testing is conducted on shoes. Such experiments may involve redundant testing across floorings and contaminant conditions, causing wasted time and effort.

PURPOSE

Quantify the correlations between shoe traction across different contaminant-flooring conditions to reduce redundant slip testing efforts.

METHODS

The available coefficient-of-friction (ACOF) was quantified for 17 shoes across five floorings and three contaminant conditions. Redundant testing conditions were identified when the shoe ACOF values for one floor-contaminant condition were highly correlated with a second floor-contaminant condition.

RESULTS

High correlations were observed among quarry floorings across different contaminants and among vinyl (composite tile) floorings with the same contaminant. However, vinyl floorings exhibited low correlations with quarry floorings. Low correlations were also observed across contaminants within vinyl tiles.

CONCLUSIONS

This study was able to determine the generalizability of traction performance of shoes across vinyl and quarry floorings. This information is anticipated to reduce redundant traction testing of shoes across vinyl and quarry floorings.

摘要

背景

为预防工作场所的滑倒和跌倒事件,需对鞋子进行机械防滑测试。此类实验可能涉及在不同地板和污染物条件下的重复测试,导致时间和精力的浪费。

目的

量化不同污染物-地板条件下鞋子牵引力之间的相关性,以减少重复的防滑测试工作。

方法

对17双鞋子在五种地板和三种污染物条件下的有效摩擦系数(ACOF)进行量化。当一种地板-污染物条件下的鞋子ACOF值与另一种地板-污染物条件高度相关时,确定为重复测试条件。

结果

在不同污染物的采石场地板之间以及相同污染物的乙烯基地板(复合瓷砖)之间观察到高度相关性。然而,乙烯基地板与采石场地板的相关性较低。在乙烯基瓷砖内的不同污染物之间也观察到低相关性。

结论

本研究能够确定鞋子在乙烯基地板和采石场地板上牵引力性能的可推广性。预计该信息将减少鞋子在乙烯基地板和采石场地板上的重复牵引力测试。

相似文献

1
Generalizability of Footwear Traction Performance across Flooring and Contaminant Conditions.
IISE Trans Occup Ergon Hum Factors. 2018;6(2):98-108. doi: 10.1080/24725838.2018.1517702. Epub 2018 Dec 11.
2
Vinyl Composite Tile Surrogate for Mechanical Slip Testing.
IISE Trans Occup Ergon Hum Factors. 2019;7(2):132-141. doi: 10.1080/24725838.2019.1637381. Epub 2019 Jul 19.
3
Performance testing of work shoes labeled as slip resistant.
Appl Ergon. 2018 Apr;68:304-312. doi: 10.1016/j.apergo.2017.12.008. Epub 2017 Dec 26.
4
Biomechanical modeling of footwear-fluid-floor interaction during slips.
J Biomech. 2023 Jul;156:111690. doi: 10.1016/j.jbiomech.2023.111690. Epub 2023 Jun 20.
5
Coefficient of friction testing parameters influence the prediction of human slips.
Appl Ergon. 2018 Jul;70:118-126. doi: 10.1016/j.apergo.2018.02.017. Epub 2018 Mar 20.
6
Traction performance across the life of slip-resistant footwear: Preliminary results from a longitudinal study.
J Safety Res. 2020 Sep;74:219-225. doi: 10.1016/j.jsr.2020.06.005. Epub 2020 Jul 9.
7
Prediction of coefficient of friction based on footwear outsole features.
Appl Ergon. 2020 Jan;82:102963. doi: 10.1016/j.apergo.2019.102963. Epub 2019 Nov 1.
8
Predicting slips based on the STM 603 whole-footwear tribometer under different coefficient of friction testing conditions.
Ergonomics. 2019 May;62(5):668-681. doi: 10.1080/00140139.2019.1567828. Epub 2019 Feb 26.
9
Influence of averaging time-interval on shoe-floor-contaminant available coefficient of friction measurements.
Appl Ergon. 2020 Jan;82:102959. doi: 10.1016/j.apergo.2019.102959. Epub 2019 Sep 27.
10
Kinematics and kinetics of the shoe during human slips.
J Biomech. 2018 Jun 6;74:57-63. doi: 10.1016/j.jbiomech.2018.04.018. Epub 2018 Apr 25.

引用本文的文献

1
Predicting Hydrodynamic Conditions under Worn Shoes using the Tapered-Wedge Solution of Reynolds Equation.
Tribol Int. 2020 May;145. doi: 10.1016/j.triboint.2020.106161. Epub 2020 Jan 8.
2
Vinyl Composite Tile Surrogate for Mechanical Slip Testing.
IISE Trans Occup Ergon Hum Factors. 2019;7(2):132-141. doi: 10.1080/24725838.2019.1637381. Epub 2019 Jul 19.
3
Worn region size of shoe outsole impacts human slips: Testing a mechanistic model.
J Biomech. 2020 May 22;105:109797. doi: 10.1016/j.jbiomech.2020.109797. Epub 2020 Apr 18.
4
Prediction of coefficient of friction based on footwear outsole features.
Appl Ergon. 2020 Jan;82:102963. doi: 10.1016/j.apergo.2019.102963. Epub 2019 Nov 1.
5
Mechanical Modeling of Healthy and Diseased Calcaneal Fat Pad Surrogates.
Biomimetics (Basel). 2019 Jan 3;4(1):1. doi: 10.3390/biomimetics4010001.

本文引用的文献

1
A Method for Measuring Fluid Pressures in the Shoe-Floor-Fluid Interface: Application to Shoe Tread Evaluation.
IIE Trans Occup. 2014;2(2):53-59. doi: 10.1080/21577323.2014.919367. Epub 2014 Nov 24.
2
Coefficient of friction testing parameters influence the prediction of human slips.
Appl Ergon. 2018 Jul;70:118-126. doi: 10.1016/j.apergo.2018.02.017. Epub 2018 Mar 20.
3
Kinematics and kinetics of the shoe during human slips.
J Biomech. 2018 Jun 6;74:57-63. doi: 10.1016/j.jbiomech.2018.04.018. Epub 2018 Apr 25.
4
Performance testing of work shoes labeled as slip resistant.
Appl Ergon. 2018 Apr;68:304-312. doi: 10.1016/j.apergo.2017.12.008. Epub 2017 Dec 26.
5
Predictive multiscale computational model of shoe-floor coefficient of friction.
J Biomech. 2018 Jan 3;66:145-152. doi: 10.1016/j.jbiomech.2017.11.009. Epub 2017 Nov 16.
7
Required coefficient of friction during level walking is predictive of slipping.
Gait Posture. 2016 Jul;48:256-260. doi: 10.1016/j.gaitpost.2016.06.003. Epub 2016 Jun 11.
8
State of science: occupational slips, trips and falls on the same level.
Ergonomics. 2016 Jul;59(7):861-83. doi: 10.1080/00140139.2016.1157214. Epub 2016 Mar 30.
9
The influence of footwear tread groove parameters on available friction.
Appl Ergon. 2015 Sep;50:237-41. doi: 10.1016/j.apergo.2015.03.018. Epub 2015 Apr 21.
10
Pedometer-measured physical activity and health behaviors in U.S. adults.
Med Sci Sports Exerc. 2010 Oct;42(10):1819-25. doi: 10.1249/MSS.0b013e3181dc2e54.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验