Suppr超能文献

人类滑倒过程中鞋子的运动学与动力学

Kinematics and kinetics of the shoe during human slips.

作者信息

Iraqi Arian, Cham Rakié, Redfern Mark S, Vidic Natasa S, Beschorner Kurt E

机构信息

Department of Bioengineering, University of Pittsburgh, Benedum Engineering Hall #302, 3700 O'Hara St., Pittsburgh, PA 15261, United States.

Department of Industrial Engineering, University of Pittsburgh, Benedum Engineering Hall #1025, 3700 O'Hara St., Pittsburgh, PA 15261, United States.

出版信息

J Biomech. 2018 Jun 6;74:57-63. doi: 10.1016/j.jbiomech.2018.04.018. Epub 2018 Apr 25.

Abstract

This paper quantified the heel kinematics and kinetics during human slips with the goal of guiding available coefficient of friction (ACOF) testing methods for footwear and flooring. These values were then compared to the testing parameters recommended for measuring shoe-floor ACOF. Kinematic and kinetic data of thirty-nine subjects who experienced a slip incident were pooled from four similar human slipping studies for this secondary analysis. Vertical ground reaction force (VGRF), center of pressure (COP), shoe-floor angle, side-slip angle, sliding speed and contact time were quantified at slip start (SS) and at the time of peak sliding speed (PSS). Statistical comparisons were used to test if any discrepancies exist between the state of slipping foot and current ACOF testing parameters. The main findings were that the VGRF (26.7 %BW, 179.4 N), shoe-floor angle (22.1°) and contact time (0.02 s) at SS were significantly different from the recommended ACOF testing parameters. Instead, the testing parameters are mostly consistent with the state of the shoe at PSS. We argue that changing the footwear testing parameters to conditions at SS is more appropriate for relating ACOF to conditions of actual slips, including lower vertical forces, larger shoe-floor angles and shorter contact duration.

摘要

本文对人体滑倒过程中的足跟运动学和动力学进行了量化,目的是指导鞋类和地板的有效摩擦系数(ACOF)测试方法。然后将这些值与测量鞋底与地面ACOF推荐的测试参数进行比较。从四项类似的人体滑倒研究中汇总了39名经历滑倒事件的受试者的运动学和动力学数据,用于本次二次分析。在滑倒开始(SS)和最大滑动速度时刻(PSS)对垂直地面反作用力(VGRF)、压力中心(COP)、鞋底与地面角度、侧滑角、滑动速度和接触时间进行了量化。采用统计比较来检验滑倒脚的状态与当前ACOF测试参数之间是否存在差异。主要发现是,SS时的VGRF(26.7%体重,179.4 N)、鞋底与地面角度(22.1°)和接触时间(0.02 s)与推荐的ACOF测试参数有显著差异。相反,测试参数大多与PSS时鞋子的状态一致。我们认为,将鞋类测试参数改为SS时的条件更适合将ACOF与实际滑倒条件联系起来,包括更低的垂直力、更大的鞋底与地面角度和更短的接触持续时间。

相似文献

1
Kinematics and kinetics of the shoe during human slips.
J Biomech. 2018 Jun 6;74:57-63. doi: 10.1016/j.jbiomech.2018.04.018. Epub 2018 Apr 25.
2
Coefficient of friction testing parameters influence the prediction of human slips.
Appl Ergon. 2018 Jul;70:118-126. doi: 10.1016/j.apergo.2018.02.017. Epub 2018 Mar 20.
3
Predicting slips based on the STM 603 whole-footwear tribometer under different coefficient of friction testing conditions.
Ergonomics. 2019 May;62(5):668-681. doi: 10.1080/00140139.2019.1567828. Epub 2019 Feb 26.
4
Performance testing of work shoes labeled as slip resistant.
Appl Ergon. 2018 Apr;68:304-312. doi: 10.1016/j.apergo.2017.12.008. Epub 2017 Dec 26.
5
Worn region size of shoe outsole impacts human slips: Testing a mechanistic model.
J Biomech. 2020 May 22;105:109797. doi: 10.1016/j.jbiomech.2020.109797. Epub 2020 Apr 18.
6
Prediction of coefficient of friction based on footwear outsole features.
Appl Ergon. 2020 Jan;82:102963. doi: 10.1016/j.apergo.2019.102963. Epub 2019 Nov 1.
7
Influence of averaging time-interval on shoe-floor-contaminant available coefficient of friction measurements.
Appl Ergon. 2020 Jan;82:102959. doi: 10.1016/j.apergo.2019.102959. Epub 2019 Sep 27.
8
Biomechanical modeling of footwear-fluid-floor interaction during slips.
J Biomech. 2023 Jul;156:111690. doi: 10.1016/j.jbiomech.2023.111690. Epub 2023 Jun 20.
9
Changes in under-shoe traction and fluid drainage for progressively worn shoe tread.
Appl Ergon. 2019 Oct;80:35-42. doi: 10.1016/j.apergo.2019.04.014. Epub 2019 May 15.
10
Modelling the stochastic nature of the available coefficient of friction at footwear-floor interfaces.
Ergonomics. 2017 Jul;60(7):977-984. doi: 10.1080/00140139.2016.1231346. Epub 2016 Sep 23.

引用本文的文献

1
Validation of a portable shoe tread scanner to predict slip risk.
J Safety Res. 2023 Sep;86:5-11. doi: 10.1016/j.jsr.2023.05.014. Epub 2023 May 27.
2
Effects of natural shoe wear on traction performance: a longitudinal study.
Footwear Sci. 2022;14(1):1-12. doi: 10.1080/19424280.2021.1994022. Epub 2021 Nov 11.
3
Prospective validity assessment of a friction prediction model based on tread outsole features of slip-resistant shoes.
Appl Ergon. 2024 Jan;114:104110. doi: 10.1016/j.apergo.2023.104110. Epub 2023 Aug 16.
5
Gait kinetics impact shoe tread wear rate.
Gait Posture. 2021 May;86:157-161. doi: 10.1016/j.gaitpost.2021.03.006. Epub 2021 Mar 8.
6
Lower Extremity Muscle Activation in Alternative Footwear during Stance Phase of Slip Events.
Int J Environ Res Public Health. 2021 Feb 5;18(4):1533. doi: 10.3390/ijerph18041533.
7
Traction performance across the life of slip-resistant footwear: Preliminary results from a longitudinal study.
J Safety Res. 2020 Sep;74:219-225. doi: 10.1016/j.jsr.2020.06.005. Epub 2020 Jul 9.
8
Predicting Hydrodynamic Conditions under Worn Shoes using the Tapered-Wedge Solution of Reynolds Equation.
Tribol Int. 2020 May;145. doi: 10.1016/j.triboint.2020.106161. Epub 2020 Jan 8.
9
Bioinspired kirigami metasurfaces as assistive shoe grips.
Nat Biomed Eng. 2020 Aug;4(8):778-786. doi: 10.1038/s41551-020-0564-3. Epub 2020 Jun 1.
10
Generalizability of Footwear Traction Performance across Flooring and Contaminant Conditions.
IISE Trans Occup Ergon Hum Factors. 2018;6(2):98-108. doi: 10.1080/24725838.2018.1517702. Epub 2018 Dec 11.

本文引用的文献

1
Coefficient of friction testing parameters influence the prediction of human slips.
Appl Ergon. 2018 Jul;70:118-126. doi: 10.1016/j.apergo.2018.02.017. Epub 2018 Mar 20.
2
Performance testing of work shoes labeled as slip resistant.
Appl Ergon. 2018 Apr;68:304-312. doi: 10.1016/j.apergo.2017.12.008. Epub 2017 Dec 26.
3
Slip initiation in alternative and slip-resistant footwear.
Int J Occup Saf Ergon. 2017 Dec;23(4):558-569. doi: 10.1080/10803548.2016.1262498. Epub 2016 Dec 21.
4
Required coefficient of friction during level walking is predictive of slipping.
Gait Posture. 2016 Jul;48:256-260. doi: 10.1016/j.gaitpost.2016.06.003. Epub 2016 Jun 11.
5
State of science: occupational slips, trips and falls on the same level.
Ergonomics. 2016 Jul;59(7):861-83. doi: 10.1080/00140139.2016.1157214. Epub 2016 Mar 30.
6
Falls in young adults: Perceived causes and environmental factors assessed with a daily online survey.
Hum Mov Sci. 2016 Apr;46:86-95. doi: 10.1016/j.humov.2015.12.007. Epub 2015 Dec 29.
7
The influence of footwear tread groove parameters on available friction.
Appl Ergon. 2015 Sep;50:237-41. doi: 10.1016/j.apergo.2015.03.018. Epub 2015 Apr 21.
8
The effect of transverse shear force on the required coefficient of friction for level walking.
Hum Factors. 2011 Oct;53(5):461-73. doi: 10.1177/0018720811414885.
9
The anatomy of a slip: Kinetic and kinematic characteristics of slip and non-slip matched trials.
Appl Ergon. 2010 Jan;41(1):41-6. doi: 10.1016/j.apergo.2009.04.002. Epub 2009 May 9.
10
Evaluation of a comprehensive slip, trip and fall prevention programme for hospital employees.
Ergonomics. 2008 Dec;51(12):1906-25. doi: 10.1080/00140130802248092.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验