Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
Phys Chem Chem Phys. 2019 Nov 27;21(46):25678-25689. doi: 10.1039/c9cp05082e.
Composite materials, consisting of a metal-organic framework (MOF) and a guest molecule, further denoted as guest@MOF composites, have gained strong interest due to the guest-induced tunability of the host properties, for example in sensing or electroconductivity applications. However, decoding the complexity of these guest@MOF composites and extracting structure-performance relationships are far from trivial and require the use of a gamut of characterization tools. In this work, we use various micro-spectroscopic tools both under static (ex situ) and dynamic (in situ) conditions to map the properties and diffusion behavior of TCNQ (7,7,8,8-tetracyanoquinodimethane) as a guest molecule in single HKUST-1 crystals as the host. Raman micro-spectroscopy allowed us to map the spatial distribution of TCNQ within HKUST-1 single crystals, thereby revealing a heterogeneous distribution of TCNQ after initial TCNQ-infiltration, concentrated at the crystal edges, and a homogeneous redistribution upon water vapor treatment. These insights are correlated to I-V scans at different temperatures and to electrochemical impedance spectroscopy (EIS), which allowed us to verify the different contributions to conductivity. These data showed changes in electrical conductivity after exposing the sample to moisture and air. In situ FT-IR micro-spectroscopy during treatment with moisturized nitrogen gas suggests lower transient diffusion rates for water inside TCNQ@HKUST-1 relative to pristine HKUST-1, likely due to steric hindrance of the pore-filling TCNQ molecules in the HKUST-1 framework. The application of micro-spectroscopic techniques is crucial to uncovering MOF intracrystal heterogeneities and yielding rationally-derived instructions for the improved design of guest@MOF systems.
复合材料由金属-有机骨架(MOF)和客体分子组成,进一步表示为客体@MOF 复合材料,由于客体诱导的宿主性质可调性,例如在传感或导电性应用中,引起了强烈的兴趣。然而,解码这些客体@MOF 复合材料的复杂性并提取结构-性能关系远非易事,需要使用一系列表征工具。在这项工作中,我们使用各种微光谱工具,在静态(原位)和动态(原位)条件下,映射 TCNQ(7,7,8,8-四氰基喹二甲烷)作为客体分子在单个 HKUST-1 晶体中的性质和扩散行为。拉曼微光谱允许我们在 HKUST-1 单晶内映射 TCNQ 的空间分布,从而揭示出初始 TCNQ 渗透后 TCNQ 的不均匀分布,集中在晶体边缘,以及水蒸气处理后的均匀再分布。这些见解与不同温度下的 I-V 扫描和电化学阻抗谱(EIS)相关联,这使我们能够验证电导率的不同贡献。这些数据显示了样品暴露在水分和空气中后电导率的变化。在用加湿氮气处理过程中的原位 FT-IR 微光谱表明,相对于原始的 HKUST-1,水在 TCNQ@HKUST-1 内的瞬态扩散速率较低,这可能是由于填充在 HKUST-1 骨架中的 TCNQ 分子的空间位阻所致。微光谱技术的应用对于揭示 MOF 晶体内部的不均匀性以及为改进客体@MOF 系统的设计提供合理的指导至关重要。