Sandia National Laboratories, Livermore, CA 94551, USA.
Science. 2014 Jan 3;343(6166):66-9. doi: 10.1126/science.1246738. Epub 2013 Dec 5.
We report a strategy for realizing tunable electrical conductivity in metal-organic frameworks (MOFs) in which the nanopores are infiltrated with redox-active, conjugated guest molecules. This approach is demonstrated using thin-film devices of the MOF Cu3(BTC)2 (also known as HKUST-1; BTC, benzene-1,3,5-tricarboxylic acid) infiltrated with the molecule 7,7,8,8-tetracyanoquinododimethane (TCNQ). Tunable, air-stable electrical conductivity over six orders of magnitude is achieved, with values as high as 7 siemens per meter. Spectroscopic data and first-principles modeling suggest that the conductivity arises from TCNQ guest molecules bridging the binuclear copper paddlewheels in the framework, leading to strong electronic coupling between the dimeric Cu subunits. These ohmically conducting porous MOFs could have applications in conformal electronic devices, reconfigurable electronics, and sensors.
我们报告了一种在金属有机骨架(MOFs)中实现可调电导率的策略,其中纳米孔中渗透了氧化还原活性的共轭客体分子。这种方法使用 7,7,8,8-四氰基对醌二甲烷(TCNQ)渗透的 MOF Cu3(BTC)2(也称为 HKUST-1;BTC,苯-1,3,5-三羧酸)的薄膜器件进行了演示。实现了可调谐、空气稳定的电导率六个数量级的变化,高达 7 西门子/米。光谱数据和第一性原理模型表明,电导率源于在骨架中桥接双核铜桨轮的 TCNQ 客体分子,导致二聚 Cu 亚基之间的强电子耦合。这些欧姆导电多孔 MOF 可应用于共形电子器件、可重构电子器件和传感器。