Kirby Brian J, Jungwirth Pavel
Sibley School of Mechanical and Aerospace Engineering , Cornell University , Ithaca , New York 14853 , United States.
Weill-Cornell Medicine , New York , New York 10065 , United States.
J Phys Chem Lett. 2019 Dec 5;10(23):7531-7536. doi: 10.1021/acs.jpclett.9b02652. Epub 2019 Nov 25.
Electronic polarization effects play an important role in the interactions of charged species in biologically relevant aqueous solutions, such as those involving salt ions, proteins, nucleic acids, or phospholipid membranes. Explicit inclusion of electronic polarization in molecular modeling is tedious both from the point of view of force field parametrization and actual performance of the simulations. Therefore, the vast majority of biomolecular simulations is performed using nonpolarizable force fields, which can lead to artifacts such as dramatically overestimated ion pairing, particularly when polyvalent ions are involved. Here, we show that many of these issues can be remedied without extra computational costs by including electronic polarization in a mean field way via charge rescaling. We also lay the solid physical foundations of this approach and reconcile from this perspective the microscopic versus macroscopic natures of nonpolarizable force fields.
电子极化效应在生物相关水溶液中带电物种的相互作用中起着重要作用,例如涉及盐离子、蛋白质、核酸或磷脂膜的那些相互作用。从力场参数化和模拟的实际性能角度来看,在分子建模中明确包含电子极化都很繁琐。因此,绝大多数生物分子模拟是使用非极化力场进行的,这可能会导致诸如离子配对被大幅高估等假象,特别是当涉及多价离子时。在这里,我们表明,通过电荷重标以平均场方式包含电子极化,可以在不增加额外计算成本的情况下纠正许多此类问题。我们还奠定了这种方法坚实的物理基础,并从这个角度调和了非极化力场的微观与宏观性质。