文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能技术在神经疾病自动诊断中的应用

Artificial Intelligence Techniques for Automated Diagnosis of Neurological Disorders.

机构信息

Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India.

Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Clementi, Singapore,

出版信息

Eur Neurol. 2019;82(1-3):41-64. doi: 10.1159/000504292. Epub 2019 Nov 19.


DOI:10.1159/000504292
PMID:31743905
Abstract

BACKGROUND: Authors have been advocating the research ideology that a computer-aided diagnosis (CAD) system trained using lots of patient data and physiological signals and images based on adroit integration of advanced signal processing and artificial intelligence (AI)/machine learning techniques in an automated fashion can assist neurologists, neurosurgeons, radiologists, and other medical providers to make better clinical decisions. SUMMARY: This paper presents a state-of-the-art review of research on automated diagnosis of 5 neurological disorders in the past 2 decades using AI techniques: epilepsy, Parkinson's disease, Alzheimer's disease, multiple sclerosis, and ischemic brain stroke using physiological signals and images. Recent research articles on different feature extraction methods, dimensionality reduction techniques, feature selection, and classification techniques are reviewed. Key Message: CAD systems using AI and advanced signal processing techniques can assist clinicians in analyzing and interpreting physiological signals and images more effectively.

摘要

背景:作者们一直在倡导这样一种研究理念,即通过巧妙地整合先进的信号处理和人工智能(AI)/机器学习技术,使用大量患者数据和生理信号及图像训练计算机辅助诊断(CAD)系统,可以帮助神经科医生、神经外科医生、放射科医生和其他医疗服务提供者做出更好的临床决策。

摘要:本文对过去 20 年中使用 AI 技术对 5 种神经疾病进行自动诊断的研究进行了综述:使用生理信号和图像的癫痫、帕金森病、阿尔茨海默病、多发性硬化症和缺血性脑卒中。综述了不同特征提取方法、降维技术、特征选择和分类技术的最新研究文章。

要点:使用 AI 和先进信号处理技术的 CAD 系统可以帮助临床医生更有效地分析和解释生理信号和图像。

相似文献

[1]
Artificial Intelligence Techniques for Automated Diagnosis of Neurological Disorders.

Eur Neurol. 2019-11-19

[2]
AI-based computer-aided diagnosis (AI-CAD): the latest review to read first.

Radiol Phys Technol. 2020-3

[3]
Diseases diagnosis based on artificial intelligence and ensemble classification.

Artif Intell Med. 2024-2

[4]
Computer-aided diagnosis in the era of deep learning.

Med Phys. 2020-6

[5]
Artificial intelligence as an emerging technology in the current care of neurological disorders.

J Neurol. 2021-5

[6]
AAPM task group report 273: Recommendations on best practices for AI and machine learning for computer-aided diagnosis in medical imaging.

Med Phys. 2023-2

[7]
Computer-aided Diagnosis of Melanoma: A Review of Existing Knowledge and Strategies.

Curr Med Imaging. 2020

[8]
The emerging role of artificial intelligence in multiple sclerosis imaging.

Mult Scler. 2022-5

[9]
DeepFHR: intelligent prediction of fetal Acidemia using fetal heart rate signals based on convolutional neural network.

BMC Med Inform Decis Mak. 2019-12-30

[10]
Application of Machine Learning Techniques for Characterization of Ischemic Stroke with MRI Images: A Review.

Diagnostics (Basel). 2022-10-19

引用本文的文献

[1]
Deep learning-based cough classification using application-recorded sounds: a transfer learning approach with VGGish.

BMC Med Inform Decis Mak. 2025-7-1

[2]
Multiresolution feature fusion for smart diagnosis of schizophrenia in adolescents using EEG signals.

Cogn Neurodyn. 2024-10

[3]
Neural interfaces: Bridging the brain to the world beyond healthcare.

Exploration (Beijing). 2024-3-14

[4]
A social science trust taxonomy with emergent vectors and symmetry.

Front Psychol. 2024-8-30

[5]
AI-assisted assessment and treatment of aphasia: a review.

Front Public Health. 2024-8-29

[6]
Exploring Therapeutic Frontiers: Unveiling the Potential of Natural Diterpenoid Derivatives in Addressing Neurological Disorders.

Curr Pharm Biotechnol. 2024-5-17

[7]
Automated characterization and detection of fibromyalgia using slow wave sleep EEG signals with glucose pattern and D'hondt pooling technique.

Cogn Neurodyn. 2024-4

[8]
Brain Organoids: A Game-Changer for Drug Testing.

Pharmaceutics. 2024-3-22

[9]
Advances in neuroproteomics for neurotrauma: unraveling insights for personalized medicine and future prospects.

Front Neurol. 2023-11-22

[10]
The Emergence of AI-Based Wearable Sensors for Digital Health Technology: A Review.

Sensors (Basel). 2023-11-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索