Suppr超能文献

人工智能技术在神经疾病自动诊断中的应用

Artificial Intelligence Techniques for Automated Diagnosis of Neurological Disorders.

机构信息

Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India.

Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Clementi, Singapore,

出版信息

Eur Neurol. 2019;82(1-3):41-64. doi: 10.1159/000504292. Epub 2019 Nov 19.

Abstract

BACKGROUND

Authors have been advocating the research ideology that a computer-aided diagnosis (CAD) system trained using lots of patient data and physiological signals and images based on adroit integration of advanced signal processing and artificial intelligence (AI)/machine learning techniques in an automated fashion can assist neurologists, neurosurgeons, radiologists, and other medical providers to make better clinical decisions.

SUMMARY

This paper presents a state-of-the-art review of research on automated diagnosis of 5 neurological disorders in the past 2 decades using AI techniques: epilepsy, Parkinson's disease, Alzheimer's disease, multiple sclerosis, and ischemic brain stroke using physiological signals and images. Recent research articles on different feature extraction methods, dimensionality reduction techniques, feature selection, and classification techniques are reviewed. Key Message: CAD systems using AI and advanced signal processing techniques can assist clinicians in analyzing and interpreting physiological signals and images more effectively.

摘要

背景

作者们一直在倡导这样一种研究理念,即通过巧妙地整合先进的信号处理和人工智能(AI)/机器学习技术,使用大量患者数据和生理信号及图像训练计算机辅助诊断(CAD)系统,可以帮助神经科医生、神经外科医生、放射科医生和其他医疗服务提供者做出更好的临床决策。

摘要

本文对过去 20 年中使用 AI 技术对 5 种神经疾病进行自动诊断的研究进行了综述:使用生理信号和图像的癫痫、帕金森病、阿尔茨海默病、多发性硬化症和缺血性脑卒中。综述了不同特征提取方法、降维技术、特征选择和分类技术的最新研究文章。

要点

使用 AI 和先进信号处理技术的 CAD 系统可以帮助临床医生更有效地分析和解释生理信号和图像。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验