Bioinformatics Lab, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
Int J Mol Sci. 2019 Nov 16;20(22):5762. doi: 10.3390/ijms20225762.
Using pan-cancer data from The Cancer Genome Atlas (TCGA), we investigated how patterns in copy number alterations in cancer cells vary both by tissue type and as a function of genetic alteration. We find that patterns in both chromosomal ploidy and individual arm copy number are dependent on tumour type. We highlight for example, the significant losses in chromosome arm 3p and the gain of ploidy in 5q in kidney clear cell renal cell carcinoma tissue samples. We find that specific gene mutations are associated with genome-wide copy number changes. Using signatures derived from non-negative factorisation, we also find gene mutations that are associated with particular patterns of ploidy change. Finally, utilising a set of machine learning classifiers, we successfully predicted the presence of mutated genes in a sample using arm-wise copy number patterns as features. This demonstrates that mutations in specific genes are correlated and may lead to specific patterns of ploidy loss and gain across chromosome arms. Using these same classifiers, we highlight which arms are most predictive of commonly mutated genes in kidney renal clear cell carcinoma (KIRC).
利用癌症基因组图谱 (TCGA) 的泛癌症数据,我们研究了癌细胞中拷贝数改变的模式如何既随组织类型而异,又随遗传改变的函数而变化。我们发现,染色体倍性和单个臂拷贝数的模式都依赖于肿瘤类型。例如,我们强调在肾透明细胞肾细胞癌组织样本中染色体臂 3p 的显著缺失和 5q 倍性的增加。我们发现特定的基因突变与全基因组拷贝数变化有关。使用非负因子分解得出的特征,我们还发现与特定的倍性变化模式相关的基因突变。最后,利用一组机器学习分类器,我们成功地使用臂拷贝数模式作为特征来预测样本中突变基因的存在。这表明特定基因的突变是相关的,可能导致染色体臂上特定的倍性丢失和获得模式。使用这些相同的分类器,我们强调了哪些臂最能预测肾透明细胞癌 (KIRC) 中常见的突变基因。