Suppr超能文献

连续块面扫描电子显微镜图像的神经网络自动分割显示,胶原纤维结构因肌腱类型和健康状况而异。

Neural network auto-segmentation of serial-block-face scanning electron microscopy images exhibit collagen fibril structural differences with tendon type and health.

作者信息

Bloom Ellen T, Sabanayagam Chandran R, Benson Jamie M, Lin Lily M, Ross Jean L, Caplan Jeffrey L, Elliott Dawn M

机构信息

Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA.

Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA.

出版信息

J Orthop Res. 2025 Jan;43(1):5-13. doi: 10.1002/jor.25961. Epub 2024 Aug 23.

Abstract

A U-Net machine learning algorithm was adapted to automatically segment tendon collagen fibril cross-sections from serial block face scanning electron microscopy (SBF-SEM) and create three-dimensional (3D) renderings. We compared the performance of routine Otsu thresholding and U-Net for a positional tendon that has low fibril density (rat tail tendon), an energy-storing tendon that has high fibril density (rat plantaris tendon), and a high fibril density tendon hypothesized to have disorganized 3D ultrastructure (degenerated rat plantaris tendon). The area segmentation of the tail and healthy plantaris tendon had excellent accuracy for both the Otsu and U-Net, with an Intersection over Union (IoU) of 0.8. With degeneration, only the U-Net could accurately segment the area, whereas Otsu IoU was only 0.45. For boundary validation, the U-Net outperformed Otsu segmentation for all tendons. The fibril diameter from U-Net was within 10% of the manual segmentation, however, the Otsu underestimated the fibril diameter by 39% in healthy plantaris and by 84% in the degenerated plantaris. Fibril geometry was averaged across the entire image stack and compared across tendon types. The tail had a lower fibril area fraction (58%) and larger fibril diameter (0.31 µm) than the healthy plantaris (67% and 0.21 µm) and degenerated plantaris tendon (66% and 0.19 µm). This method can be applied to a large variety of tissues to quantify 3D collagen fibril structure.

摘要

一种U-Net机器学习算法被用于从连续块面扫描电子显微镜(SBF-SEM)图像中自动分割肌腱胶原纤维横截面,并创建三维(3D)渲染图。我们比较了常规大津阈值法和U-Net算法在低纤维密度的定位肌腱(大鼠尾腱)、高纤维密度的储能肌腱(大鼠跖肌腱)以及假设具有无序3D超微结构的高纤维密度肌腱(退变大鼠跖肌腱)上的性能。对于尾腱和健康跖肌腱的面积分割,大津阈值法和U-Net算法的准确率都很高,交并比(IoU)为0.8。在退变情况下,只有U-Net算法能够准确分割面积,而大津阈值法的IoU仅为0.45。在边界验证方面,U-Net算法在所有肌腱上的表现均优于大津阈值法分割。U-Net算法得出的纤维直径与手动分割结果相差在10%以内,然而,大津阈值法在健康跖肌腱中低估纤维直径39%,在退变跖肌腱中低估84%。对整个图像堆栈的纤维几何形状进行平均,并在不同类型的肌腱之间进行比较。尾腱的纤维面积分数(58%)低于健康跖肌腱(67%)和退变跖肌腱(66%),而纤维直径(0.31µm)大于健康跖肌腱(0.21µm)和退变跖肌腱(0.19µm)。该方法可应用于多种组织,以量化3D胶原纤维结构。

相似文献

本文引用的文献

6
Evidence of structurally continuous collagen fibrils in tendons.肌腱中结构连续的胶原纤维的证据。
Acta Biomater. 2017 Mar 1;50:293-301. doi: 10.1016/j.actbio.2017.01.006. Epub 2017 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验