Szczesny Spencer E, Fetchko Kristen L, Dodge George R, Elliott Dawn M
Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd St, Philadelphia, Pennsylvania, 19104.
Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, 150 Academy Street, Newark, Delaware, 19716.
J Orthop Res. 2017 Oct;35(10):2127-2134. doi: 10.1002/jor.23517. Epub 2017 Jan 31.
Collagen fibrils in tendon are believed to be discontinuous and transfer tensile loads through shear forces generated during interfibrillar sliding. However, the structures that transmit these interfibrillar forces are unknown. Various extrafibrillar tissue components (e.g., glycosaminoglycans, collagens XII and XIV) have been suggested to transmit interfibrillar loads by bridging collagen fibrils. Alternatively, collagen fibrils may interact directly through physical fusions and interfibrillar branching. The objective of this study was to test whether extrafibrillar proteins are necessary to transmit load between collagen fibrils or if interfibrillar load transfer is accomplished directly by the fibrils themselves. Trypsin digestions were used to remove a broad spectrum of extrafibrillar proteins and measure their contribution to the multiscale mechanics of rat tail tendon fascicles. Additionally, images obtained from serial block-face scanning electron microscopy were used to determine the three-dimensional fibrillar organization in tendon fascicles and identify any potential interfibrillar interactions. While trypsin successfully removed several extrafibrillar tissue components, there was no change in the macroscale fascicle mechanics or fibril:tissue strain ratio. Furthermore, the imaging data suggested that a network of smaller diameter fibrils (<150 nm) wind around and fuse with their neighboring larger diameter fibrils. These findings demonstrate that interfibrillar load transfer is not supported by extrafibrillar tissue components and support the hypothesis that collagen fibrils are capable of transmitting loads themselves. Conclusively determining how fibrils bear load within tendon is critical for identifying the mechanisms that impair tissue function with degeneration and for restoring tissue properties via cell-mediated regeneration or engineered tissue replacements. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2127-2134, 2017.
肌腱中的胶原纤维被认为是不连续的,并通过纤维间滑动过程中产生的剪切力来传递拉伸载荷。然而,传递这些纤维间力的结构尚不清楚。有人提出各种纤维外组织成分(如糖胺聚糖、Ⅻ型和ⅩⅣ型胶原)通过桥接胶原纤维来传递纤维间载荷。另外,胶原纤维可能通过物理融合和纤维间分支直接相互作用。本研究的目的是测试纤维外蛋白对于在胶原纤维之间传递载荷是否必要,或者纤维间载荷传递是否直接由纤维自身完成。使用胰蛋白酶消化来去除多种纤维外蛋白,并测量它们对大鼠尾腱束多尺度力学的贡献。此外,从连续块面扫描电子显微镜获得的图像用于确定腱束中的三维纤维组织,并识别任何潜在的纤维间相互作用。虽然胰蛋白酶成功去除了几种纤维外组织成分,但宏观尺度的腱束力学或纤维与组织应变比没有变化。此外,成像数据表明,直径较小的纤维(<150nm)网络围绕并与其相邻的直径较大的纤维融合。这些发现表明,纤维间载荷传递不受纤维外组织成分的支持,并支持胶原纤维自身能够传递载荷的假设。最终确定纤维在肌腱中如何承受载荷,对于识别因退变而损害组织功能的机制以及通过细胞介导的再生或工程组织替代来恢复组织特性至关重要。©2017骨科学研究协会。由威利期刊公司出版。《矫形外科学研究杂志》35:2127 - 2134, 2017。