Suppr超能文献

原位 Li-NMR 分析不同电解质组成和浓度的锂金属表面沉积物。

In situLi-NMR analysis of lithium metal surface deposits with varying electrolyte compositions and concentrations.

机构信息

MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Corrensstr. 46, 48149 Münster, Germany.

MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Corrensstr. 46, 48149 Münster, Germany and Helmholtz Institute Münster (HI MS), IEK-12, Forschungszentrum Jülich GmbH, Corrensstr. 46, 48149 Münster, Germany.

出版信息

Phys Chem Chem Phys. 2019 Dec 21;21(47):26084-26094. doi: 10.1039/c9cp05334d. Epub 2019 Nov 20.

Abstract

A major challenge of lithium metal electrodes, in theory a suitable choice for rechargeable high energy density batteries, comprises non-homogeneous lithium deposition and the growth of reactive high surface area lithium, which eventually yields active material losses and safety risks. While it is hard to fully avoid inhomogeneous deposits, the achievable morphology of the occurring lithium deposits critically determines the long-term cycling behaviour of the cells. In this work, we focus on a combined scanning electron microscopy (SEM) and Li nuclear magnetic resonance spectroscopy (Li-NMR) study to unravel the impact of the choice of conducting salts (LiPF and LiTFSI), solvents (EC : DEC, 3 : 7, DME : DOL, 1 : 1), as well as their respective concentrations (1 M, 3 M) on the electrodeposition process, demonstrating that lithium deposition morphologies may be controlled to a large extent by proper choice of cycling conditions and electrolyte constituents. In addition, the applicability of Li-NMR spectroscopy to assess the resulting morphology is discussed. It was found, that lithium deposition analysis based on the Li chemical shift and intensity should be used carefully, as various morphologies can lead to similar results. Still, our case study reveals that the combination of SEM and NMR data is rather advantageous and offers complementary insights that may provide pathways for the future design of tailored electrolytes.

摘要

金属锂电极面临的一个主要挑战是,尽管从理论上看它是可充电高能量密度电池的理想选择,但它存在不均匀的锂沉积和反应性高表面积锂的生长问题,这最终会导致活性材料损失和安全风险。虽然难以完全避免不均匀的沉积物,但发生的锂沉积物的可实现形态对电池的长期循环性能具有决定性影响。在这项工作中,我们重点采用扫描电子显微镜(SEM)和锂核磁共振光谱(Li-NMR)相结合的方法,研究了导电盐(LiPF 和 LiTFSI)、溶剂(EC:DEC,3:7,DME:DOL,1:1)以及它们各自浓度(1 M,3 M)对电沉积过程的影响,结果表明,可以在很大程度上通过选择适当的循环条件和电解质成分来控制锂沉积形态。此外,还讨论了 Li-NMR 光谱在评估所得形态方面的适用性。结果发现,基于锂化学位移和强度的锂沉积分析应谨慎使用,因为各种形态可能会导致相似的结果。不过,我们的案例研究表明,SEM 和 NMR 数据的组合具有相当大的优势,并提供了互补的见解,这可能为未来定制电解质的设计提供了途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验