Suppr超能文献

使用多粒子跟踪和人工神经网络预测原位纳米颗粒行为。

Predicting in situ nanoparticle behavior using multiple particle tracking and artificial neural networks.

机构信息

Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA.

出版信息

Nanoscale. 2019 Nov 28;11(46):22515-22530. doi: 10.1039/c9nr06327g.

Abstract

Predictive models of nanoparticle transport can drive design of nanotherapeutic platforms to overcome biological barriers and achieve localized delivery. In this paper, we demonstrate the ability of artificial neural networks to predict both nanoparticle properties, such as size and protein adsorption, and aspects of the brain microenvironment, such as cell internalization, viscosity, and brain region by using large (>100 000) trajectory datasets collected via multiple particle tracking in in vitro gel models of the brain and cultured organotypic brain slices. Our neural network achieved a 0.75 recall score when predicting gel viscosity based on trajectory datasets, compared to 0.49 using an obstruction scaling model. When predicting in situ nanoparticle size based on trajectory datasets, neural networks achieved a 0.90 recall score compared to 0.83 using an optimized Stokes-Einstein predictor. To distinguish between nanoparticles of different sizes in more complex nanoparticle mixtures, our neural network achieved up to a recall score of 0.85. Even in cases of more nuanced output variables where mathematical models are not available, such as protein adhesion, neural networks retained the ability to distinguish between particle populations (recall score of 0.89). These findings demonstrate how trajectory datasets in combination with machine learning techniques can be used to characterize the particle-microenvironment interaction space.

摘要

预测纳米粒子输运的模型可以推动纳米治疗平台的设计,以克服生物屏障并实现局部递送。在本文中,我们展示了人工神经网络的能力,该网络可以通过在体外脑凝胶模型和培养的器官型脑片中使用多个粒子追踪收集的大型(>100000)轨迹数据集来预测纳米粒子的特性(如大小和蛋白质吸附)和脑微环境的各个方面(如细胞内化、粘度和脑区)。与使用阻塞缩放模型相比,我们的神经网络在基于轨迹数据集预测凝胶粘度时达到了 0.75 的召回分数。当基于轨迹数据集预测原位纳米粒子大小时,神经网络的召回分数为 0.90,而使用优化的 Stokes-Einstein 预测器则为 0.83。为了在更复杂的纳米粒子混合物中区分不同大小的纳米粒子,我们的神经网络的召回分数高达 0.85。即使在没有数学模型的情况下,如蛋白质粘附等更细微的输出变量,神经网络仍能够区分粒子群体(召回分数为 0.89)。这些发现表明,如何将轨迹数据集与机器学习技术相结合,用于表征粒子-微环境相互作用空间。

相似文献

9

引用本文的文献

1
High-fidelity predictions of diffusion in the brain microenvironment.高保真预测大脑微环境中的扩散。
Biophys J. 2024 Nov 19;123(22):3935-3950. doi: 10.1016/j.bpj.2024.10.005. Epub 2024 Oct 10.
2
Passive and Active Microrheology for Biomedical Systems.生物医学系统的被动和主动微观流变学
Front Bioeng Biotechnol. 2022 Jul 5;10:916354. doi: 10.3389/fbioe.2022.916354. eCollection 2022.
4
Merging data curation and machine learning to improve nanomedicines.将数据管理和机器学习相结合,以改善纳米医学。
Adv Drug Deliv Rev. 2022 Apr;183:114172. doi: 10.1016/j.addr.2022.114172. Epub 2022 Feb 18.
6
Governing Transport Principles for Nanotherapeutic Application in the Brain.用于脑部纳米治疗应用的传输控制原则。
Curr Opin Chem Eng. 2020 Dec;30(12):112-119. doi: 10.1016/j.coche.2020.08.010. Epub 2020 Oct 18.

本文引用的文献

2
Colloidal stability as a determinant of nanoparticle behavior in the brain.胶体稳定性作为纳米颗粒在大脑中行为的决定因素。
Colloids Surf B Biointerfaces. 2018 Oct 1;170:673-682. doi: 10.1016/j.colsurfb.2018.06.050. Epub 2018 Jun 30.
4
Analysis of locomotor behavior in the German Mouse Clinic.德国鼠科临床中的运动行为分析。
J Neurosci Methods. 2018 Apr 15;300:77-91. doi: 10.1016/j.jneumeth.2017.05.005. Epub 2017 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验