Suppr超能文献

多粒子追踪检测大脑细胞外基质变化,预测神经发育年龄。

Multiple Particle Tracking Detects Changes in Brain Extracellular Matrix and Predicts Neurodevelopmental Age.

机构信息

Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.

Department of Radiology, University of Washington, Seattle, Washington 98195, United States.

出版信息

ACS Nano. 2021 May 25;15(5):8559-8573. doi: 10.1021/acsnano.1c00394. Epub 2021 May 10.

Abstract

Brain extracellular matrix (ECM) structure mediates many aspects of neural development and function. Probing structural changes in brain ECM could thus provide insights into mechanisms of neurodevelopment, the loss of neural function in response to injury, and the detrimental effects of pathological aging and neurological disease. We demonstrate the ability to probe changes in brain ECM microstructure using multiple particle tracking (MPT). We performed MPT of colloidally stable polystyrene nanoparticles in organotypic rat brain slices collected from rats aged 14-70 days old. Our analysis revealed an inverse relationship between nanoparticle diffusive ability in the brain extracellular space and age. Additionally, the distribution of effective ECM pore sizes in the cortex shifted to smaller pores throughout development. We used the raw data and features extracted from nanoparticle trajectories to train a boosted decision tree capable of predicting chronological age with high accuracy. Collectively, this work demonstrates the utility of combining MPT with machine learning for measuring changes in brain ECM structure and predicting associated complex features such as chronological age. This will enable further understanding of the roles brain ECM play in development and aging and the specific mechanisms through which injuries cause aberrant neuronal function. Additionally, this approach has the potential to develop machine learning models capable of detecting the presence of injury or indicating the extent of injury based on changes in the brain microenvironment microstructure.

摘要

脑细胞外基质(ECM)结构介导了神经发育和功能的许多方面。因此,探测脑 ECM 的结构变化可以深入了解神经发育的机制、损伤导致的神经功能丧失以及病理性衰老和神经疾病的有害影响。我们展示了使用多粒子跟踪(MPT)探测脑 ECM 微结构变化的能力。我们在从 14-70 天大的大鼠中收集的器官型大鼠脑切片中进行了胶体稳定聚苯乙烯纳米颗粒的 MPT。我们的分析表明,脑细胞外空间中纳米颗粒扩散能力与年龄呈反比关系。此外,皮层中有效 ECM 孔径的分布在整个发育过程中向较小的孔径转移。我们使用原始数据和从纳米颗粒轨迹中提取的特征来训练一个能够高精度预测年龄的提升决策树。总的来说,这项工作证明了将 MPT 与机器学习相结合来测量脑 ECM 结构变化并预测相关复杂特征(如年龄)的有效性。这将进一步了解脑 ECM 在发育和衰老中的作用,以及损伤导致异常神经元功能的具体机制。此外,这种方法有可能开发出基于脑微环境微结构变化来检测损伤存在或指示损伤程度的机器学习模型。

相似文献

2
High-fidelity predictions of diffusion in the brain microenvironment.高保真预测大脑微环境中的扩散。
Biophys J. 2024 Nov 19;123(22):3935-3950. doi: 10.1016/j.bpj.2024.10.005. Epub 2024 Oct 10.
10
Extracellular matrix protein expression is brain region dependent.细胞外基质蛋白表达具有脑区依赖性。
J Comp Neurol. 2016 May 1;524(7):1309-36. doi: 10.1002/cne.23965. Epub 2016 Feb 1.

引用本文的文献

3
High-fidelity predictions of diffusion in the brain microenvironment.高保真预测大脑微环境中的扩散。
Biophys J. 2024 Nov 19;123(22):3935-3950. doi: 10.1016/j.bpj.2024.10.005. Epub 2024 Oct 10.

本文引用的文献

2
Fibrotic Scar in Neurodegenerative Diseases.神经退行性疾病中的纤维瘢痕
Front Immunol. 2020 Aug 14;11:1394. doi: 10.3389/fimmu.2020.01394. eCollection 2020.
8
Basement membrane and blood-brain barrier.基底膜和血脑屏障。
Stroke Vasc Neurol. 2018 Dec 5;4(2):78-82. doi: 10.1136/svn-2018-000198. eCollection 2019 Jul.
10
Single-Particle Diffusion Characterization by Deep Learning.基于深度学习的单颗粒扩散特征分析。
Biophys J. 2019 Jul 23;117(2):185-192. doi: 10.1016/j.bpj.2019.06.015. Epub 2019 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验