Becker Georg A, Schwab Matthew B, Lötzsch Robert, Tietze Stefan, Klöpfel Diethard, Rehwald Martin, Schlenvoigt Hans-Peter, Sävert Alexander, Schramm Ulrich, Zepf Matt, Kaluza Malte C
Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743, Jena, Germany.
Helmholtz-Institut Jena, Fröbelstieg 3, D-07743, Jena, Germany.
Sci Rep. 2019 Nov 20;9(1):17169. doi: 10.1038/s41598-019-53587-3.
We report on a proton acceleration experiment in which high-intensity laser pulses with a wavelength of 0.4 μm and with varying temporal intensity contrast have been used to irradiate water droplets of 20 μm diameter. Such droplets are a reliable and easy-to-implement type of target for proton acceleration experiments with the potential to be used at very high repetition rates. We have investigated the influence of the laser's angle of incidence by moving the droplet along the laser polarization axis. This position, which is coupled with the angle of incidence, has a crucial impact on the maximum proton energy. Central irradiation leads to an inefficient coupling of the laser energy into hot electrons, resulting in a low maximum proton energy. The introduction of a controlled pre-pulse produces an enhancement of hot electron generation in this geometry and therefore higher proton energies. However, two-dimensional particle-in-cell simulations support our experimental results confirming, that even slightly higher proton energies are achieved under grazing laser incidence when no additional pre-plasma is present. Illuminating a droplet under grazing incidence generates a stream of hot electrons that flows along the droplet's surface due to self-generated electric and magnetic fields and ultimately generates a strong electric field responsible for proton acceleration. The interaction conditions were monitored with the help of an ultra-short optical probe laser, with which the plasma expansion could be observed.
我们报告了一项质子加速实验,其中使用波长为0.4μm且时间强度对比度可变的高强度激光脉冲来辐照直径为20μm的水滴。这种水滴是质子加速实验中一种可靠且易于实现的靶材类型,具有在非常高的重复频率下使用的潜力。我们通过沿激光偏振轴移动水滴来研究激光入射角的影响。这个与入射角相关的位置对最大质子能量有至关重要的影响。中心辐照会导致激光能量向热电子的耦合效率低下,从而使最大质子能量较低。引入受控预脉冲会增强这种几何结构中的热电子产生,进而产生更高的质子能量。然而,二维粒子模拟支持我们的实验结果,证实当不存在额外的预等离子体时,在掠入射激光条件下甚至能获得略高的质子能量。在掠入射条件下照射水滴会产生一股热电子流,由于自生电场和磁场,这股热电子流会沿着水滴表面流动,并最终产生负责质子加速的强电场。借助超短光学探测激光监测相互作用条件,利用它可以观察等离子体膨胀。