Suppr超能文献

用于候选基因分析的遗传采样方法比较

A comparison of genetic sampling methodologies for candidate-gene analyses.

作者信息

Sun Jessie, Tung Steven R, Wang Danxin, Kitzmiller Joseph P, Smith Sakima

机构信息

Department of Biological Chemistry, The Ohio State University, Columbus, Ohio, USA.

Department of Anesthesiology, The Ohio State University, Columbus, Ohio, USA.

出版信息

J Transl Sci. 2019 Jun;5(3). doi: 10.15761/JTS.1000306. Epub 2018 Aug 25.

Abstract

Much of the recent gains in knowledge regarding the influence of patient genetics on medication pharmacokinetics (drug absorption, distribution, metabolism and elimination) how patients process medications) and pharmacodynamics (drug response) have been attributed to the technologic advances in genetic testing methodologies and the involvement of large clinical data sets and biobanks. Indeed, Genome Wide Association Studies (GWAS) and Phenome Wide Association Studies (PWAS) along with ever-evolving biomedical informatics techniques and the expansion of the -omics sciences ( transcriptomics, metabolomics, proteomics) have brought about unprecedented advances in precision medicine. Although the simpler candidate-gene analysis technique is not considered cutting-edge, it is reliable and important to the translation of pharmacogenomic research and the advancement of precision medicine. Leveraging the knowledge of biological plausibility ( genetic mutation → altered function of protein product → altered drug pharmacokinetics/dynamics) to appropriately select genes for inclusion, the candidate-gene analysis technique does not necessitate large patient cohorts nor extensive multi-gene genetic analysis arrays. It is often the ideal method for clinicians to begin evaluating whether genetic information might improve their pharmacologic treatment strategies for their patients. Having access to specific patient populations and expertise regarding their medical subspecialty, physician scientists can implement a candidate-gene analysis in small cohorts. Even with less than 100 patients, results can often be used to determine whether further investigation is warranted and to inform future studies. Herein, we present a comparison of select contemporary methodologies regarding collection, processing and genotype testing applicable to the efficient implementation of candidate-gene studies.

摘要

近期在患者遗传学对药物药代动力学(药物吸收、分布、代谢和消除,即患者如何处理药物)和药效学(药物反应)影响方面所取得的诸多知识进展,都归功于基因检测方法的技术进步以及大型临床数据集和生物样本库的参与。的确,全基因组关联研究(GWAS)和全表型组关联研究(PWAS),连同不断发展的生物医学信息学技术以及“组学”科学(转录组学、代谢组学、蛋白质组学)的扩展,已在精准医学领域带来了前所未有的进展。尽管较为简单的候选基因分析技术不被视为前沿技术,但它对于药物基因组学研究的转化以及精准医学的推进而言是可靠且重要的。利用生物学合理性知识(基因突变→蛋白质产物功能改变→药物药代动力学/药效学改变)来恰当选择纳入的基因,候选基因分析技术不需要大量患者队列,也不需要广泛的多基因遗传分析阵列。对于临床医生而言,它常常是开始评估基因信息是否可能改善其对患者药物治疗策略的理想方法。医师科学家凭借接触特定患者群体以及其医学亚专业方面的专业知识,能够在小队列中开展候选基因分析。即便患者少于100人,研究结果通常也可用于确定是否有必要进行进一步调查,并为未来研究提供参考。在此,我们对适用于高效开展候选基因研究的当代选择方法在样本收集、处理和基因分型检测方面进行比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验