IEEE Trans Med Imaging. 2020 May;39(5):1646-1654. doi: 10.1109/TMI.2019.2954121. Epub 2019 Nov 19.
We propose a k-space preconditioning formulation for accelerating the convergence of iterative Magnetic Resonance Imaging (MRI) reconstructions from non-uniformly sampled k-space data. Existing methods either use sampling density compensations which sacrifice reconstruction accuracy, or circulant preconditioners which increase per-iteration computation. Our approach overcomes both shortcomings. Concretely, we show that viewing the reconstruction problem in the dual formulation allows us to precondition in k-space using density-compensation-like operations. Using the primal-dual hybrid gradient method, the proposed preconditioning method does not have inner loops and are competitive in accelerating convergence compared to existing algorithms. We derive l2 -optimized preconditioners, and demonstrate through experiments that the proposed method converges in about ten iterations in practice.
我们提出了一种 k 空间预处理公式,用于加速从非均匀采样的 k 空间数据中迭代重建磁共振成像 (MRI) 的收敛速度。现有的方法要么使用采样密度补偿,这会牺牲重建准确性,要么使用循环预处理器,这会增加每次迭代的计算量。我们的方法克服了这两个缺点。具体来说,我们表明,在对偶形式下观察重建问题,我们可以使用类似于密度补偿的操作在 k 空间中进行预处理。使用原对偶混合梯度方法,所提出的预处理方法没有内部循环,与现有算法相比,在加速收敛方面具有竞争力。我们推导出了 l2 优化的预处理器,并通过实验证明,所提出的方法在实践中大约需要十次迭代即可收敛。